UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA CAMPUS VII - CODÓ / MA CURSO DE LICENCIATURA EM CIÊNCIAS NATURAIS / BIOLOGIA

IRLAN RODRIGUES PINTO

MODELAGEM MATEMÁTICA DA HANSENÍASE COM DEMOGRAFIA EM CODÓ – MA

CODÓ – MA 2020

UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA CAMPUS VII – CODÓ / MA

CURSO DE LICENCIATURA EM CIÊNCIAS NATURAIS / BIOLOGIA

MODELAGEM MATEMÁTICA DA HANSENÍASE COM DEMOGRAFIA EM CODÓ – MA

Monografia apresentada ao Curso de Ciências Naturais da UFMA para obtenção do grau de Licenciatura em Ciências Naturais – Biologia.

Aprovado em: ____ / ____ /____

BANCA EXAMINADORA:

Prof. Dr. Arlane Manoel Silva Vieira (Orientador)

Prof. Dr. Leonardo Rogério da Silva Rodrigues (Examinador)

> Profa. Dra. Joelma Soares da Silva (Examinadora)

Modelagem matemática da Hanseníase com demografia em Codó-MA

Irlan Rodrigues Pinto

Universidade Federal do Maranhão, Codó, MA, Brasil

irlanrodriguespinto@gmail.com

Arlane Manoel Silva Vieira

Universidade Federal do Maranhão, Codó, MA, Brasil

arlane@ufma.br

1 Resumo

 Apresentamos um modelo discreto compartimental, do tipo SIR (Suscetível-Infectado-Removível) com demografia, para a dinâmica da hanseníase no município de Codó-MA. Com os dados da Secretaria Municipal de Saúde, no período entre 2003 e 2018, estimamos os parâmetros que minimizam o erro quadrático médio e descrevemos a evolução do número de casos de infectados ao longo do tempo. Além disso, analisamos as condições de estabilidade do modelo em termos do número de reprodução básico.
 Palavras-chave

9 Epidemiologia, Hanseníase, Modelagem matemática, Estimação de parâmetros.

10 1 Introdução

O município de Codó está entre às cinco cidades do estado do Maranhão com maior
coeficiente de prevalência dos casos de Hanseníase, está que é uma doença crônica
e contagiosa que tem como a gente etiológico a bactéria *Mycobacterium leprae (M. Leprae)*. Devido ao número alarmante em 2014, o município implementou o *Projeto Ações Inovadoras para o Controle da Hanseníase*, com objetivo de fazer buscas ativas
nas casas dos populares que moram em bairros com alto índice da doença.

Porem o numero de casos de Hanseníase continuam elevados mesmo com as 17 buscas que visam a identificação da doença por exames físicos ou anamnese que é 18 uma entrevista realizada durante a consulta, no caso tem por objetivo encontrar sinais 19 dermatológicos como lesões na pele e alterações na sensibilidade do local. É claro 20 que estas medidas são paliativas e buscam identificar as pessoas infectadas, para que 21 elas comessem o tratamento o mais rápido possível possibilitando a sua recuperação 22 e evitando, assim, a propagação da doença, impedindo que ela ataque organismos 23 de pessoas suscetíveis. Porem o ciclo de propagação da doença continua constante, 24 onde possivelmente a falta de informação pelo suscetível e o tratamento tardio pelo 25 infectado, mantém esta doença histórica conhecida na antiguidade conhecida como lepra 26 ativa até os dias atuais. Estes fatores são complacentes para o estudo da modelagem 27 matemática, com o alto índices de infectados e as informações em relação aos suscetíveis 28 e recuperados. 29

Esta gama de informações auxiliara na elaboração das projeções do modelo epidemiológico SIR, que descrevera a dinâmica da Hanseníase no município, por meio de gráficos e tabelas. Este tipo de estudo é de fundamental importância para entender o comportamento da epidemia no município e compreender quem é o agente mantenedor da doença.

35 2 Modelo SIR com demografia

Uma estratégia para explicar um fenômeno epidemiológico como disseminação e 36 controle de uma doença é o uso de modelos matemáticos. Neste contexto, o primeiro 37 modelo foi apresentado por Kermack e McKendrick (1927). Nele, a população é classi-38 ficada em três grupos, também chamados compartimentos: (S) o grupo dos indivíduos 39 não-infectados, mas suscetíveis à contrair a doença; (I) o grupo dos indivíduos infecta-40 dos pelo patógeno; (R) o grupo dos indivíduos removidos, ou por morte, ou por ganhar 41 imunidade à doença. Assumimos que, em cada unidade de tempo t, um indivíduo está 42 em apenas um dos grupos citados. A pesquisa de Kermack e McKendrick apresenta os 43 princípios básicos para a modelagem de epidemias usadas até hoje, os modelos do tipo 44 SIR (Suscetíveis-Infectados-Recuperados). 45

O modelo SIR *com demografia* é uma adaptação do modelo original em que consideramos nascimentos e mortes na população, à uma mesma taxa. Em particular, isto significa que a população é constante ao longo do tempo. Além disso, apresentamos um modelo discreto através de equações de diferenças finitas.

Denotaremos por S_t , I_t e R_t , respectivamente, a proporção de indivíduos suscetíveis, infectados e recuperados em relação à população total no instante t. Com essa notação, para todo t, temos a identidade:

$$S_t + I_t + R_t = 1. (1)$$

Para simplificar o modelo de interações entre os compartimentos, admitimos as
 seguintes hipóteses:

55 H1 Todos os indivíduos nascem suscetíveis;

56 H2 Não existe período de incubação para a doença;

57 H3 Depois que um indivíduo se recupera, ele fica permanentemente imune.

58 H4 Os grupos I e S estão distribuídos uniformemente na população;

59 Neste modelo estamos assumindo que todo indivíduo infectado também é infec-

60 cioso. A hipótese H3 indica que um indivíduo sai do grupo dos recuperados apenas

Figura 1: Diagrama compartimental do modelo.

- 61 por motivo de morte. A propagação da doença está representada pelo diagrama abaixo
- 62 (Figura 1). Na Figura 1:
- μ é a taxa nascimentos e mortes na população;
- β é a taxa de transmissão ou infecciosidade, proporcional ao contato entre suscetíveis e infectados;
- γ é a taxa de cura (ou remoção) dos infectados.
- O modelo SIR com demografia é descrito pelo sistema de equações de diferenças
 finitas:

$$\begin{cases}
S_{t+1} - S_t = \mu - \beta S_t I_t - \mu S_t \\
I_{t+1} - I_t = \beta S_t I_t - \gamma I_t - \mu I_t \\
R_{t+1} - R_t = \gamma I_t - \mu R_t \\
S_t + I_t + R_t = 1
\end{cases}$$
(2)

69 3 Análise da estabilidade local

A terceira equação do Sistema (2) é uma combinação linear das duas primeiras
 equações, e portanto, é suficiente discutir o novo sistema:

$$\begin{cases} S_{t+1} = \mu - \beta S_t I_t + (1-\mu) S_t, \\ I_{t+1} = -\beta S_t I_t + (1-\gamma-\mu) I_t \end{cases}$$
(3)

72 com $S_0 \ge 0$ e $I_0 \ge 0$.

73 Consideremos o campo vetorial planar

$$F(X,Y) := (\mu - \beta XY + (1-\mu)X, \beta XY + (1-\gamma - \mu)Y).$$
(4)

Então, para todo t,

$$(S_{t+1}, I_{t+1}) = F(S_t, I_t).$$

Em particular, para todo $n \ge 1$ inteiro,

$$(S_n, I_n) = F^n(S_0, I_0).$$

A notação F^n indica a composição de F com ela mesma por n vezes, definida da seguinte forma:

$$F^1 = F, F^2 = F \circ F, \dots, F^{n+1} = F \circ F^n,$$

para todo inteiro $n \ge 1$. Por definição, F^0 é a *função identidade* e a sequência $F^n(S_0, I_0)$ é chamada *órbita* ou *trajetória* do ponto (S_0, I_0) . Um *ponto fixo* ou *ponto de equilíbrio* do sistema dinâmico induzido pelo campo F é um ponto (S_*, I_*) no plano SI tal que $F(S_*, I_*) = (S_*, I_*)$. Resolvendo esta equação usando a Relação (4), obtemos dois pontos de equilíbrio:

$$E_0 = (1,0)$$
 e $E_1 = \left(\frac{\mu+\gamma}{\beta}, \frac{\mu(\beta-\mu-\gamma)}{\beta(\mu+\gamma)}\right)$

Uma vez que $I_* = 0$ em E_0 , dizemos que E_0 é um ponto de equilíbrio livre de doença. Já o ponto E_1 existe apenas se $\beta - \mu - \gamma > 0$, ou seja, se

$$\mathcal{R}_0 := \frac{\beta}{\mu + \gamma} > 1$$

e por isso, dizemos que E_1 é um ponto de equilíbrio *endêmico*. O número \mathcal{R}_0 é conhecido como *número de reprodução básico* da doença e determina o comportamento assintótico do modelo. Com essa notação, temos:

$$E_1 = \left(\frac{1}{\mathcal{R}_0}, \frac{\mu(\mathcal{R}_0 - 1)}{\beta}\right).$$

Para descrever a dinâmica próximo de cada ponto fixo, vamos analisar a parte linear do campo F, ou seja, a matriz Jacobiana de F:

$$J_F(X,Y) = \begin{bmatrix} \partial_X F_1 & \partial_Y F_1 \\ \partial_X F_2 & \partial_Y F_2 \end{bmatrix},$$

onde F_1 e F_2 são as funções componentes de F. Portanto,

$$J_F(X,Y) = \begin{bmatrix} 1 - \mu - \beta Y & -\beta X \\ \beta Y & 1 - \gamma - \mu + \beta X \end{bmatrix}$$

A matriz Jacobiana avaliada em E_0 é dada por

$$J_F(E_0) = \begin{bmatrix} 1-\mu & -\beta \\ 0 & 1+\beta-\gamma-\mu \end{bmatrix},$$

cujos autovalores são $\lambda_1 = 1 - \mu$ e $\lambda_2 = 1 + \beta - \gamma - \mu$. Como $0 \le \mu < 1$ temos 75 $|\lambda_1| < 1$. Além disso, podemos escrever $\lambda_2 = 1 + (\mathcal{R}_0 - 1)(\mu + \gamma)$. Assim, para $\mathcal{R}_0 < 1$ 76 temos $|\lambda_2| < 1$ e portanto, E_0 é um ponto de equilíbrio localmente assintoticamente 77 estável. Isto significa que cada indivíduo infectado, durante seu período de infecção, 78 transmitirá a doença para menos de um indivíduo suscetível, em média. Neste caso, a 79 doença será erradicada da população.

Por outro lado, se $\mathcal{R}_0 > 1$ então $|\lambda_2| > 1$, ou seja, o ponto E_0 é instável. E neste caso, cada indivíduo infectado transmitirá a doença para mais de um indivíduo suscetíve. O ponto de equilíbrio endêmico E_1 existe apenas neste cenário.

Teorema 1. O ponto de equilíbrio endêmico E_1 é localmente assintoticamente estável.

Em outras palavras, isto significa que existe r > 0 tal que $(S_n, I_n) \rightarrow E_1$ quando $n \rightarrow \infty$, para toda condição inicial (S_0, I_0) que satisfaça a desigualdade

$$||(S_0, I_0) - E_1|| < r.$$

Esta última relação quer dizer que (S_0, I_0) está a uma distância menor que r do ponto E₁ no plano SI.

A matriz Jacobiana de F avaliada no ponto E_1 é dada por

$$J_F(E_1) = \begin{bmatrix} \frac{\gamma + \mu - \beta \mu}{\mu + \gamma} & -\mu - \gamma \\ \frac{\mu(\beta - \mu - \gamma)}{\mu + \gamma} & 1 \end{bmatrix} = \begin{bmatrix} 1 - \beta \mathcal{R}_0 & -\frac{\beta}{\mathcal{R}_0} \\ \mu(\mathcal{R}_0 - 1) & 1 \end{bmatrix}.$$

Consideremos o traço e o determinante de $J_F(E_1)$ como funções escalares dos parâmetros μ , β e γ , ou seja,

$$T = T(\mu, \beta, \gamma) = \frac{\gamma + \mu - \beta \mu}{\mu + \gamma} + 1$$

86 e

$$D = D(\mu, \beta, \gamma) = 1 + \mu(\beta - \mu - \gamma) - \frac{\beta\mu}{\mu + \gamma}.$$
(5)

Denotaremos por $Q = [0, 1]^3$, o cubo unitário. Com essa notação, consideremos a seguinte região no conjunto dos parâmetros:

$$\mathcal{W} := \{(\mu, \beta, \gamma) \in \mathcal{Q} | \beta > \mu + \gamma\}$$

Analisando-se os máximos e mínimos das funções T e D restritos à região W pode-se verificar que

$$0 < D \le 1 \quad \text{e} \quad 1 \le T \le 2. \tag{6}$$

- ⁸⁹ De (5) pode-se verificar sem dificuldades, que
- **Lema 2.** Se D = 1 então $\mu = 0$ ou $\beta = \frac{\mathcal{R}_0^2}{\mathcal{R}_0 1}$. Em particular, $D \neq 1$.

Demonstração. Suponha que D = 1 e $\mu \neq 0$. Então, de (5),

$$\mu(\beta - \mu - \gamma) - \frac{\beta\mu}{\mu + \gamma} = 0 \iff \beta - \frac{\beta}{\mathcal{R}_0} = \mathcal{R}_0 \iff \beta = \frac{\mathcal{R}_0^2}{\mathcal{R}_0 - 1}.$$

Por outro lado,

$$\beta \leq 1 \Longleftrightarrow \frac{\mathcal{R}_0^2}{\mathcal{R}_0 - 1} \leq 1 \Longleftrightarrow \mathcal{R}_0^2 - \mathcal{R}_0 \leq -1,$$

- uma contradição com a condição $\mathcal{R}_0 > 1$. Como estamos supondo $\mu \neq 0$, isto implica que $D \neq 1$.
- **Lema 3.** Para todo $(\beta, \mu, \gamma) \in W$ temos T D < 1.

Demonstração. Para todo $(\beta, \mu, \gamma) \in W$ temos $-\beta < -(\mu + \gamma)$ e consequentemente, $-\beta\mu < -\mu(\mu + \gamma)$. Logo,

$$T(\beta, \mu, \gamma) - D(\beta, \mu, \gamma) = 1 - \beta \mu + \gamma \mu + \mu^2 = 1 - \beta \mu + \mu(\gamma + \mu) < 1.$$

94

Lema 4. Para todo $(\beta, \mu, \gamma) \in W$ temos |T| < 1 + D < 2.

Demonstração. Pela Relação (6) temos |T| = T. Com isso, do Lema (3), |T| < 1 + D. E do Lema (2) juntamente com a desigualdade (6), temos D < 1. Logo, 1 + D < 2 e portanto

$$|T| < 1 + D < 2.$$

96

⁹⁷ Demonstração do Teorema 1. Com a mesma notação acima, para o traço e o determi-⁹⁸ nante da matriz $J_F(E_1)$, segue do Lema (3) que |T| < 1 + D < 2 em W. Pelo critério ⁹⁹ de Schur-Cohn (KULENOVIC; MERINO, 2002, p. 99), E_1 é um ponto de equilíbrio ¹⁰⁰ localmente assintoticamente estável.

101 4 Dados epidemiológicos

102 Os dados epidemiológicos dos casos de Hanseníase foram obtidos na Secretaria

103 Municipal da Saúde e estão indicados na Tabela 1.

ANO	Infectados	Suscetíveis	Recuperados
2001	95	312	86
2002	118	270	106
2003	144	529	135
2004	148	430	142
2005	158	499	146
2006	107	401	103
2007	135	544	122
2008	104	397	97
2009	138	438	130
2010	129	428	118
2011	116	370	106
2012	118	433	114
2013	106	420	102
2014	148	549	133
2015	112		94
2016	80		71
2017	107		95
2018	102		30

Tabela 1: Número de infecciosos, suscetíveis e recuperados no município de Codó-MA dos anos de 2001 a 2018. Fonte: Secretaria Municipal da Saúde.

Com a Tabela 1 obtemos os dados proporcionais relacionados à quantidade de
 infectados, suscetíveis e recuperados.

Observando a tabela acima é possível notar uma lacuna na coluna dos indivíduos
suscetíveis do período de 2015 a 2018. Os dados deste período serão desconsiderados
na estimação dos parâmetros do modelo. Os dados proporcionais estão indicados na
Tabela 2.

	t	ANO	I_t	S_t	R_t
	0	2001	0,193	0,633	0,174
	1	2002	0,239	0,547	0,215
	2	2003	0,178	0,655	0,167
	3	2004	0,206	0,597	0,197
	4	2005	0,197	0,621	0,182
	5	2006	0,175	0,656	0,169
1	6	2007	0,169	0,679	0,152
	7	2008	0,174	0,664	0,162
	8	2009	0,195	0,620	0,184
	9	2010	0,191	0,634	0,175
	10	2011	0,196	0,625	0,179
	11	2012	0,177	0,651	0,171
	12	2013	0,169	0,669	0,162
	13	2014	0,178	0,661	0,160

Tabela 2: Números proporcionais em relação à população: infecciosos, suscetíveis e recuperados.

110 4.1 Estimação dos parâmetros

Usaremos a notação $\overline{I}_t \in \overline{S}_t$ para indicar as proporções de suscetíveis e infectados, respectivamente, no instante t na Tabela 2. Dessa forma, usaremos o Método dos Mínimos Quadrados para estimar os parâmetros β , $\mu \in \gamma$ que minimizam a função erro quadrático médio

$$\mathcal{E}(\beta,\mu,\gamma) = \frac{1}{13} \sum_{i=1}^{13} |I_t - \overline{I}_t|^2.$$

Para obter uma fórmula explícita para \mathcal{E} , observamos que, para $t \ge 0$,

$$I_{t+1} - \overline{I}_{t+1} = \beta \overline{S}_t \overline{I}_t + (1 - \gamma - \mu) \overline{I}_t - \overline{I}_{t+1}.$$

111 Com os dados da Tabela 2, obtemos

$$\begin{aligned} \mathcal{E}(\beta,\mu,\gamma) &= 0,00079 + 0,000294595\beta + 0,0144527\beta^2 + 0,0000703077\gamma - \\ &- 0,046044\beta\gamma + 0,0367893\gamma^2 + 0,0000703077\mu - \\ &- 0,046044\beta\mu + 0,0735786\mu\gamma + 0,0367893\mu^2, \end{aligned}$$

cujo valor mínimo é 0,000585654, e o ponto de mínimo tem coordenadas

 $\beta = 0,998324, \quad \mu = 0,311888 \quad e \quad \gamma = 0,311888.$

Figura 2: Ajuste do modelo percentual de infectados aos dados pelo método dos mínimos quadrados.

112 4.2 Resultados

Para os parâmetros β , γ e μ determinados na seção anterior, calculamos o número de reprodução básico:

$$\mathcal{R}_0 = 1,60045 > 1.$$

Pelo Teorema 1, o Sistema 3 admite um ponto de equilíbrio endêmico E_1 localmente atrator, enquanto que o ponto de equilíbrio livre de doença é instável. Portanto, para condições iniciais próximas de $E_1 = (0, 624823; 0, 187588)$, sua órbita converge para este ponto fixo. Em particular, para $t \rightarrow \infty$,

$$I_t \longrightarrow \frac{\mu(\mathcal{R}_0 - 1)}{\beta} = 0,187588.$$

113 Com essa análise, espera-se que a proporção de infectados na população se estabilize

- em torno de 18,8%. O comportamento assintótico de I_t , de acordo com o modelo, está representado na Figura 3.
- Na Figura 4 indicamos a trajetória da condição inicial (S_0, I_0) . É possível observar que essa órbita converge para o ponto fixo endêmico E_1 .

Figura 3: Projeção do percentual de infectados na propulação.

Figura 4: Órbita do ponto inicial (S_0, I_0) .

118 5 Conclusões

Observando os dados da Figura 3, que foram obtidos através do modelo SIR com demografia 2, nota-se que o número de infectados (I) decai para os próximos anos. Analisando o número de reprodução básico \mathcal{R}_0 concluímos que não haverá extinção da epidemia de Hanseníase, entretanto, o número de casos de infectados se estabilizará.

123 6 Agradecimentos

Os autores agradecem à Secretaria Municipal de Saúde de Códo-MA por disponibilizar os dados da pesquisa.

126 **Referências**

- [1] BRASIL. Secretaria de Políticas de Saúde. Departamento de Atenção Básica. Guia 127 para o Controle da hanseníase. Brasília: Ministério da Saúde, 2002. 128 [2] BRASIL. Secretaria de Vigilância em Saúde. Boletim Epidemiológico: Ministério 129 da Saúde, 2018. 130 [3] H. W. Hethcote. The mathematics of infectious diseases. SIAM Rev., 42 (2000), 131 599-653 (electronic). 132 [4] H.W. Hethcote, Asymptotic behavior and stability in epidemic models, in Mathe-133 matical Problems in Biology, Victoria Conference 1973 (P. van den Driessche, 134 Ed.), Lecture Notes in Biomathematics 2, Springer, 1974. 135 [5] KMc KERMACK, W.O.; MCKENDRICK, A.G. Contributions to the mathe-136 matical theory of diseases. Proceedings of the Royal Society, 115A: 700-721, 137 1927. 138 [6] KM KULENOVIC, M.R.S.; MERINO, O. Discrete Dynamical Systems and 139 Difference Equations with Mathematica. Chapman & Hall/CRC, 2002. 140 [7] H. W. Hethcote, Qualitative analyses of communicable disease models, Math. 141 Biosci., 28 (1976), pp. 335-356. 142
- [8] Danilo, L. F. (2016). Modelagem Matemática para Hanseníase em Codó-MA.
 Dissertação de Mestrado, IMECC-UNICAMP, Campinas/SP.
- [9] Flores, C. D. E. (1995). Modelagem Matemática para a Hanseníase. Dissertação
 de Mestrado, IMECC-UNICAMP, Campinas/SP.