UNIVERSIDADE FEDERAL DO MARANHÃO - UFMA CENTRO DE CIÊNCIAS DE CHAPADINHA - CCCh CURSO DE ZOOTECNIA

LUCIANO DA SILVA SANTOS

DESEMPENHO PRODUTIVO DO SORGO SILAGEIRO EM FUNÇÃO DO ARRANJO DE PLANTIO E DA ADUBAÇÃO ADICIONAL DE NITROGÊNIO

CHAPADINHA/MA

LUCIANO DA SILVA SANTOS

DESEMPENHO PRODUTIVO DO SORGO SILAGEIRO EM FUNÇÃO DO ARRANJO DE PLANTIO E DA ADUBAÇÃO ADICIONAL DE NITROGÊNIO

Trabalho de conclusão de curso de Zootecnia da Universidade Federal do Maranhão, como requisito indispensável para obtenção do título de bacharel em Zootecnia.

Orientador: Prof. Dr. Zinaldo

Firmino da Silva

Coorientador: Wnenner Vinícius

Saraiva

LUCIANO DA SILVA SANTOS

DESEMPENHO PRODUTIVO DO SORGO SILAGEIRO EM FUNÇÃO DO ARRANJO DE PLANTIO E DA ADUBAÇÃO ADICIONAL DE NITROGÊNIO

Trabalho apresentado ao Curso de Zootecnia da Universidade Federal do Maranhão como requisito para obtenção do título de Zootecnista

BANCA EXAMINADORA

Profa. Dr. Zinaldo Firmino da Silva (Orientador)
Universidade Federal do Maranhão – UFMA

Prof. Dra. Rosane Cláudia Rodrigues (Examinadora)
Universidade Federal do Maranhão – UFMA

Prof. Dra. Luma Castro de Souza (Examinadora)
Universidade Federal do Maranhão – UFMA

Dedico este trabalho a toda a minha família, por sempre estar ao meu lado nos momentos bons ou ruins. Em especial à minha mãe Maria Dalva da Silva, dona Dalva e ao meu pai, Luís dos Santos, aos meus irmãos, Lucidalva da Silva Santos, Luciana da Silva Santos, Lucivaldo da Silva Santos e Maria Francisca da Silva Santos e ao meu eterno amigo, Erderson Santos (in memorian), agradeço pelo apoio, confiança, e incentivo, pela ajuda em toda essa trajetória.

AGRADECIMENTOS

Agradeço primeiramente aos meus pais, minha família por serem a base e alicerce e permitir a realização deste sonho, por me conceder condições para que eu chegasse até aqui, agradeço, pois, sem estas condições, não seria possível.

A Universidade Federal do Maranhão - UFMA, por conceder a de realização deste curso maravilhoso.

A minha mãe **Maria Dalva Da Silva**, que fez o possível para que eu chegasse até aqui e sempre acreditou no meu potencial e apoiou em minhas decisões mesmos com todas as dificuldades.

Aos meus irmãos **Lúcia, Luciana, Lucivaldo, Maria Francisca** aos meus sobrinhos, **Joyce, Jaciara, Jaynara, Letica, Jakcson (Junior), Maria Luiza, Lara** por todo apoio sem restrição, palavras de incentivo, vocês acreditaram nesse sonho junto comigo o tempo inteiro.

A minha namorada Nayane Costa que sempre me apressa nos meus afazeres. Aos meus amigos em especial Rúbia Neumam, Anailson Maciel, Jaynara Moraes, Jardson Teixeira, Thiago Santos, Vinícius Cruz, Pedro Felipe, Nívia Brandão, Pedro Lucas, Francisco Denílson, Antônio Marcos, aos integrantres do grupo GadLeite (Grupo de Apoio ao Desenvolviento da Pecuária Leiteira), Fopama (Forragicultura e Pastagens no Maranhão), Gesbe (Grupo de Estudos em Solos e Biodiversidade) aos técnicos de campo Wenner Vinicíus Saraiva, Antônia Mara Nascimento Gomes, Raphael Silva, Leonardo Taverni pela ajuda prestada nestes últimos anos da minha jornada acadêmica e por me proporcionar momentos únicos de conhecimento, descontração e alegria.

Ao meu orientador **Dr. Zinaldo Firmino da Silva** pelos ensinamentos repassados durantes esses anos de orientação, pelas longas conversas cheias de conhecimentos, por toda paciência, pelas broncas e por ter confiado outras resposanbilidades.

Ao **Centro de Ciências de Chapadinha** e todo seu corpo docente e demais funcionários pela base e ensinamentos repassados e por colaborar de forma significativa para minha formação acadêmica.

Por fim, a todos que contribuíram de certa forma na minha vida acadêmica e na realização deste trabalho e que não foram citados.

A vocês, a minha imensa gratidão!

Ficha gerada por meio do SIGAA/Biblioteca com dados fornecidos pelo(a) autor(a). Diretoria Integrada de Bibliotecas/UFMA

da Silva Santos, Luciano.

DESEMPENHO PRODUTIVO DO SORGO SILAGEIRO EM FUNÇÃO DO ARRANJO DE PLANTIO E DA ADUBAÇÃO ADICIONAL DE NITROGÊNIO / Luciano da Silva Santos. - 2025.

36 p.

Coorientador(a) 1: Wenner Vinicíus Saraiva. Orientador(a): Zinaldo Firmino da Silva. Monografia (Graduação) - Curso de Zootecnia, Universidade Federal do Maranhão, Chapadinha-ma, 2025.

1. Conservação de Forragem. 2. Sorgo Silageiro. 3. Produtividade. 4. Fileiras Duplas. I. Firmino da Silva, Zinaldo. II. Vinicíus Saraiva, Wenner. III. Título.

RESUMO

O sorgo silageiro é uma variedade de sorgo (Sorghum bicolor (L.) Moench) cultivada principalmente para a produção de silagem, alimento volumoso destinado à nutrição de ruminantes. Destaca-se por sua alta produtividade, resistência à seca e boa adaptação a diferentes tipos de solo, sendo uma alternativa ao milho em regiões com menor disponibilidade hídrica. Apresenta bom valor energético e teores adequados de fibra quando colhido no estágio ideal de maturação (grãos pastosos). Além disso, possui rápida rebrota e baixo custo de produção, o que o torna uma opção viável para sistemas pecuários que buscam manter qualidade nutricional e estabilidade alimentar ao longo do ano. A pesquisa foi desenvolvida na Unidade de Pesquisa em Nutrição de Gado de Leite (UPNGL), vinculada ao Centro de Ciências de Chapadinha da Universidade Federal do Maranhão (UFMA), localizada no município de Chapadinha, pertencente à Mesorregião Leste do Maranhão. Objetivou-se com esse estudo verificar a influência do arranjo de plantio em duplas (1,00x0,20x1,00) e aplicação adicional de nitrogênio (N), sob o crescimento e produtividade de forragem de sorgo silageiro. O experimento foi conduzido em delineamento em blocos casualizados, em esquema fatorial 2 × 2, com quatro tratamentos e seis repetições, totalizando 24 unidades experimentais, utilizou-se a cultivar BRS 661, e em função disso quantificar a produção de matéria seca total (MS) por hectare caracterizando os parâmetros morfológicos e biométricos das plantas de sorgo, incluindo altura de plantas, diâmetro do colmo, comprimento e diâmetro da panícula, massa fresca e seca das folhas, colmos e panículas, massa total das plantas (fresca e seca). Não foram observados efeitos (p > 0,05) do arranjo de plantio (A), da aplicação adicional de nitrogênio (B), nem da interação entre esses fatores (A × B) sobre as variáveis morfoagronômicas avaliadas na cultura do sorgo. De forma semelhante, a aplicação adicional de nitrogênio (N) também não apresentou efeito significativo (p > 0,05) sobre as variáveis morfoagronômicas analisadas. Portanto o arranjo de plantio em linhas duplas pode ser utilizado como alternativa para cultivo de sorgo silageiro sem perdas de produtividade uma vez que o arranjo de plantio pode ser adaptado para utilização de irrigação localizada.

Palavras chaves: Conservação de forragem, sorgo silageiro, produtividade, fileiras duplas

ABSTRACT

Silage sorghum is a variety of sorghum (Sorghum bicolor (L.) Moench) cultivated primarily for the production of silage, a bulky feed for ruminant livestock. It stands out for its high productivity, drought resistance, and good adaptation to different soil types, making it an alternative to corn in regions with reduced water availability. It offers good energy value and adequate fiber content when harvested at the ideal stage of maturity (soft grains). Furthermore, it has rapid regrowth and low production costs, making it a viable option for livestock systems seeking to maintain nutritional quality and feed stability throughout the year. The research was conducted at the Dairy Cattle Nutrition Research Unit (UPNGL), linked to the Chapadinha Science Center of the Federal University of Maranhão (UFMA), located in the municipality of Chapadinha, in the Eastern Mesoregion of Maranhão. The aim of this study was to verify the influence of the double planting arrangement (1.00x0.20x1.00) and additional nitrogen (N) application on the growth and productivity of silage sorghum forage. The experiment was conducted in a randomized block design, in a 2×2 factorial scheme, with four treatments and six replicates, totaling 24 experimental units. The cultivar BRS 661 was used. Therefore, to quantify the production of total dry matter (DM) per hectare, characterizing the morphological and biometric parameters of sorghum plants, including plant height, stalk diameter, panicle length and diameter, fresh and dry mass of leaves, stalks and panicles, and total plant mass (fresh and dry). No effects (p > 0.05) of the planting arrangement (A), additional nitrogen application (B), or the interaction between these factors (A \times B) were observed on the morpho-agronomic variables evaluated in the sorghum crop. Similarly, the additional nitrogen (N) application also did not show a significant effect (p > 0.05) on the morpho-agronomic variables analyzed. Therefore, the double-row planting arrangement can be used as an alternative for silage sorghum cultivation without productivity losses, since the planting arrangement can be adapted for the use of localized irrigation.

Keywords: Forage conservation, silage sorghum, productivity, double rows

LISTA DE FIGURAS

Figura 1- Sorgo granífero	15
Figura 2- Sorgo silageiro	15
Figura 3- Silagem de sorgo	16
Figura 4- Área do experimento	20
Figura 5- Croqui do experimento	21
Figura 6- Fileiras simples	22
Figura 7- Fileiras duplas	20
Figura 8- Superfosfato simples	21
Figura 9- Cloreto de potássio	21
Figura 10- Ureia	21
Figura 11- Ureia mais Cloreto de potássio	21

LISTA DE TABELAS

Tabela 1 — Atributos químicos do solo da área experimental no local estudado utiliza	ado
antes da instalação do experimento, durante o ano 2024.	20
Tabela 2 — Valores de p da análise de variância para as variáveis morfoagronômicas	do
sorgo em função do arranjo de plantio (A), aplicação adicional de nitrogênio (B) e su	ıa
interação (A × B)	27
Tabela 3 — Médias das variáveis morfoagronômicas do sorgo em função do arranjo o	de
plantio (linhas simples e duplas)	28
Tabela 4 — Médias das variáveis morfoagronômicas do sorgo em função da aplicaçã	o
adicional de nitrogênio (com e sem aplicação)	29

SUMÁRIO

INTRODUÇÃO	12
REVISÃO DE LITERATURA	14
Características gerais do sorgo	14
Formas de utilização do sorgo	15
Adubação do sorgo	17
Espaçamento e densidade de plantio	18
OBJETIVOS	19
Objetivo geral	19
Objetivos específicos	19
MATERIAL E MÉTODOS	20
RESULTADO E DISCUSSÕES	26
CONCLUSÃO	31
REFERÊNCIAS	32

1. INTRODUÇÃO

O sorgo (*Sorghum bicolor* (L.) Moench) é uma cultura de grande importância para a produção animal, cuja domesticação ocorreu há milhares de anos. Ao longo do tempo, a cultura passou por processos de seleção e melhoramento genético com o objetivo de aumentar sua produtividade, especialmente na produção de forragem para suprir as demandas da pecuária (Borém et al., 2014). O cultivo do sorgo vem aumentando sua importância na região Nordeste, principalmente nas áreas com ocorrências frequentes de deficiência hídrica, devido às suas características de tolerância a seca e substituto do milho na alimentação para bovinos, suínos e aves (Pitombeira et al., 2004).

O sorgo silageiro, é caracterizado por porte elevado, boa relação folha/colmo e alto rendimento de matéria seca. Este é amplamente utilizado na produção de silagem e se destaca como o principal tipo cultivado na região Nordeste (Santos et al., 2003). Além de apresentar elevada produtividade de matéria seca, o sorgo silageiro possui alto teor de carboidratos solúveis, baixo efeito tampão e elevado valor nutricional, características essenciais para a produção de forragens de qualidade (Perazzo, 2017).

Embora seja uma cultura adaptada a condições de baixa fertilidade, maiores produtividades virão em sistemas de produção agrícola, seja por adubação orgânica ou química, calculado fornecidos à cultura (Coelho et al., 2017). Dentre eles, o nitrogênio (N) e o potássio (K) se destacam por estarem envolvidos em quase todos os processos fisiológicos e metabólicos da planta, e quando bem manuseado pode proporcionar elevados resultados de produtividade de grãos e fitomassa (Ali et al., 2021). Além do nitrogênio, o potássio se destaca no desenvolvimento vegetal ao longo de todo o ciclo, sua presença estimula o crescimento radicular e aumenta os teores de matéria seca e de nitrogênio total presente em plantas submetidas à restrição hídrica em fases cruciais do desenvolvimento. Sua disponibilidade está atrelada ao conteúdo de água presente no solo, que em condições normais, favorece a difusão do K e o fluxo de massa, melhorando a eficiência da fotossíntese e a atividade enzimática na planta, gerando aumento no crescimento e na produtividade final da cultura (Tittal et al., 2021). Assim como nitrogênio e o potássio, o cálcio (Ca), fósforo (P) e magnésio (Mg) são considerados essenciais para a cultura do sorgo, uma vez que, a extração desses nutrientes do solo pela cultura do sorgo segue um aumento linear paralelo ao aumento da produtividade dessa cultura (Casela et al., 2007; Romeu et al., 2020). A adubação mineral é, portanto, uma prática indispensável para o alcance de altas produtividades, especialmente em solos

pobres em nutrientes. Além de suprir as necessidades nutricionais da cultura, a adubação contribui para a reposição dos nutrientes exportados, favorecendo a sustentabilidade do sistema produtivo (Albuquerque; Camargo; Souza, 2013).

Outro ponto de relevância nos resultados com o sorgo é o arranjo das plantas, definido pelo espaçamento entre linhas, pode exercer influência direta sobre o desenvolvimento e produtividade do sorgo. A adoção de espaçamentos mais amplos, como no sistema de linha simples, facilita práticas culturais, especialmente o manejo mecânico. Por outro lado, espaçamentos mais estreitos, como o sistema de linhas duplas, pode favorecer a interceptação da radiação solar, reduzir a competição com plantas daninhas e otimizar o uso de sistemas de irrigação por gotejamento (Simões et al., 2022) e reduzir pela metade a quantidade de fita gotejadora utilizada. A escolha entre espaçamento simples ou duplo pode variar de acordo com a espécie de sorgo, as condições ambientais e as práticas culturais adotadas (Simões et al., 2022), sendo, portanto, necessário investigar o efeito do arranjo das plantas sobre o seu desempenho produtivo

Por causa disto foi proposto um ensaio experimental com a cultura do sorgo silageiro, para avaliar a produtividade e biometria da forragem obtida em cultivos com diferentes espaçamentos entre fileiras e nível de adubação.

2. REVISÃO DE LITERATURA

Características gerais do sorgo

O sorgo (*Sorghum bicolor* (L.) Moench), pertencente à família Poaceae, é um dos cereais mais cultivados no mundo, destacando-se pelo alto potencial produtivo e econômico. Trata-se de uma planta de metabolismo C4, com elevada eficiência no uso da luz e da água, o que lhe confere excelente adaptação a regiões de clima quente e seco. A luminosidade é fundamental para o desempenho fotossintético e, consequentemente, para o desenvolvimento da cultura (Manarelli et al., 2019). Entretanto, em períodos de elevadas temperaturas, a demanda hídrica se torna crítica, impactando diretamente a produtividade, seja para produção de grãos, forragem, silagem ou biomassa (Sousa, 2020). Apresenta como características morfológicas um colmo ereto e robusto, com sistema radicular bem desenvolvido. Suas folhas são intercaladas e compostas por limbo, bainha, lígula e lâmina foliar, além da presença de nós bem definidos, podendo apresentar de 7 a 30 folhas, conforme o genótipo e as condições de cultivo (Santos et al., 2005).

De acordo com Neumann et al. (2005), o sorgo é uma cultura que apresenta ampla adaptabilidade às condições edafoclimáticas brasileiras, sendo cultivado no verão em diversas regiões, e na região Sul pode ser plantado desde o inverno até o verão. No Nordeste, destaca-se por seu bom desempenho mesmo em condições semiáridas, que possuem precipitações anuais inferiores a 600 mm.

Existem diferentes tipos de sorgo, sendo os mais comuns o granífero (Figura 1), e o forrageiro (Figura 2) ou mais bem denominado de silageiro, uma vez que todos os tipos anteriores são forrageiros, ou seja, podem ser utilizados na alimentação animal. O sorgo granífero apresenta porte baixa e é destinado a produção de grãos; o sacarino é considerado de porte alto e possui colmos ricos em açúcares, utilizado na produção de etanol; já o sorgo silageiro, caracterizado por porte elevado, boa relação folha/colmo e alto rendimento de matéria seca, é utilizado para a produção de silagem para alimentação animal (Santos et al., 2003). O sorgo silageiro surge com grandes avanços na parte de melhoramento, tendo em vista que se trata de uma cultura de fácil manuseio e de alta produtividade, rendimento de biomassa, além de oferecer um produto de alta qualidade e de baixo custo na pecuária de leite e de corte. Esses segmentos podem se tornar, em pouco tempo, o grande mercado consumidor de forragem e de grãos de sorgo, e poderão contribuir decisivamente para a consolidação da cultura no mundo (EMBRAPA., 2010).

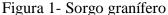


Figura 2- Sorgo silageiro

Fonte: o Autor

Entre as cultivares de sorgo silageiro desenvolvidas, destaca-se o BRS 661, recomendado para produção de silagem de alta qualidade. Essa cultivar apresenta elevada produtividade de massa verde (MV), superior a 70 t ha⁻¹, além de excelente perfil nutricional (EMBRAPA 2024). O ciclo até o ponto de colheita varia entre 110 e 130 dias após a semeadura, a depender das condições edafoclimáticas, com notável capacidade de rebrota, o que favorece sistemas de cultivo sustentáveis e rentáveis (Perazzo et al., 2013). Apesar dos avanços no desenvolvimento de novos genótipos, ainda há necessidade de mais pesquisas que estabeleçam recomendações específicas para cada cultivar, considerando o sistema de cultivo, as condições ambientais e as exigências nutricionais (Perazzo et al., 2013)

Utilização do sorgo para silagem

A diminuição da oferta de forragem nos períodos de estiagem do ano é consequência da irregularidade de chuvas e do clima que ocorre na região Nordeste. Portanto, o uso de forrageiras adaptadas a essas condições é imprescindível, sendo uma ótima alternativa para pequenos e médios produtores em época de escassez (Elias et al., 2017).

O uso da silagem (Figura3) é uma importante ferramenta para reservar o alimento e preservar o valor nutricional das gramíneas produzidas no período de maior disponibilidade hídrica, agregado a um baixo custo da tonelada de matéria verde produzida, pois dispensa o uso de sistemas de irrigação (Viana et al., 2014). Contudo, para assegurar a qualidade da silagem, é indispensável que o processo de ensilagem seja bem conduzido, com uso de maquinário adequado, corte uniforme das plantas e boa

compactação, fatores que impactam diretamente na conservação e no custo do volumoso. O sorgo silageiro é uma das principais fontes de volumoso para ruminantes durante os períodos de escassez. Um hectare de sorgo, produzindo em média 13 toneladas de matéria seca, pode atender à demanda alimentar de até oito unidades animais (UA), considerando um consumo diário de aproximadamente 2,5% do peso corporal por um período de 150 dias (IPA, 2013). A utilização de diferentes genótipos de sorgo permite otimizar o desempenho produtivo e reduzir custos, uma vez que se ajustam às condições específicas de cada sistema de produção.

Figura 3- Silagem de sorgo

Fonte: o Autor

De acordo com Church (1988), uma dieta para ruminantes deve conter níveis de proteína bruta (PB) acima de 7% para manter a microbiota ruminal ativa. Os valores médios de PB encontrados em cultivares de sorgo variam bastante, entre 3 à 10% a depender da cultivar e do manejo empregado, sendo necessária a suplementação de PB ou nitrogênio não-proteico (NNP) via concentrado aos animais.

O uso da silagem é uma importante ferramenta para reservar o alimento e preservar o valor nutricional das gramíneas produzidas no período de maior disponibilidade hídrica, com menor custo por tonelada de matéria verde produzida quando comparada com sistemas irrigados (Viana et al., 2014). Contudo, para assegurar a qualidade da silagem, é indispensável que o processo de ensilagem seja bem conduzido, com uso de maquinário adequado, corte uniforme das plantas e boa compactação, fatores que impactam diretamente na conservação e no custo do volumoso. Logo, a obtenção de maior produtividade a exemplo de 70 t MV/ha resultaria no dobro da capacidade de suporte, seja em dias ou em UA. A utilização de diferentes genótipos de sorgo permite otimizar o desempenho produtivo e reduzir custos, uma vez que se ajustam às condições específicas de cada sistema de produção.

Ressalta-se que para um bom desempenho produtivo com reflexos em altos valores nutricionais do sorgo é necessário o manejo adequado da fertilidade do solo. A adoção de práticas que promovam a melhoria das condições físicas, químicas e biológicas do solo, como a utilização de fertilizantes, é fundamental para superar os desafios de produtividade e sustentabilidade. Alguns atributos físicos do solo como densidade e espaço poroso podem ser utilizados como indicadores da qualidade do solo de acordo com o manejo a que o solo está sendo submetido. Uma contínua avaliação, no tempo, destes atributos físicos do solo permite monitorar a eficiência ou não destes sistemas de manejo do solo (Secco et al., 2005).

A precocidade do sorgo forrageiro, que permite ciclos de produção em cerca de quatro meses, associada à capacidade de rebrota, especialmente quando manejado com adubação adequada, contribui para a sua viabilidade econômica (Rodrigues, 2012; Afzal et al., 2012).

Adubação do Sorgo

Os nutrientes são elementos essenciais para bom crescimento e desenvolvimento das plantas, com várias funções no metabolismo, sendo estas específicas para cada nutriente. Portanto, a pouca disponibilidade dos nutrientes desenvolve alterações no metabolismo das plantas que podem refletir em redução de produção (Taiz; Zeiger, 2013).

A importância da adubação mineral quando utilizada de forma correta na cultura do sorgo, possibilita ganhos em produção que variam conforme as condições de cultivo. Macedo et al. (2012) verificou que adubação mineral refletiu no acréscimo de 42,05% na produção de matéria verde (PMV) por hectare na cultura do sorgo. Adicionalmente Júlio et al., (2012) comprovou a importância da adubação fosfatada para o sorgo no momento do plantio, certificando o incremento produtivo de 5.479 a 6.177 kg de matéria seca (MS) ha⁻¹ em dose de 50 kg P ha em comparação a nível 0 de aplicação de P ha⁻¹.

Além do aumento na produtividade de MS, também são observadas alterações nos constituintes morfológicos da planta de sorgo em função dos níveis de adubação. Macedo et al. (2012) verificaram um incremento na proporção de panícula com a aplicação de doses crescentes de nitrogênio (N), o que contribuiu para um aumento de 11,88% na matéria seca (MS) da planta inteira. Segundo Gontijo Neto et al. (2004), esse aumento na participação da panícula é o principal fator responsável pela elevação da produção total de matéria seca. No sorgo forrageiro de porte alto, sob adubação de manutenção, observa-

se principalmente um aumento na proporção de colmo, o qual apresenta correlação positiva com a altura da planta e com a produção de matéria verde por hectare. Esse comportamento justifica a elevação na proporção de colmo em função das doses crescentes de adubação e de condições climáticas favoráveis (Oliveira et al., 2005). No entanto, por ser a fração de menor valor nutritivo na planta de sorgo (Cummins, 1972), o aumento do colmo está associado a uma correlação negativa com a produção de panículas. Consequentemente, ocorre redução no teor de MS e no valor nutritivo da forragem, devido ao maior acúmulo de fibra em detergente neutro (FDN) e de frações indigestíveis.

Espaçamento e densidade de plantio

A definição do espaçamento entre linhas de semeadura é um fator fundamental no manejo do sorgo, com impactos diretos sobre a interceptação de luz, eficiência no uso dos recursos e produtividade. Tradicionalmente, espaçamentos maiores, entre 0,70 e 0,90 m, eram comuns para culturas como soja, milho e sorgo (Meira et al., 1977). Contudo, estudos mais recentes demonstram que a adoção de espaçamentos reduzidos resulta em incrementos significativos na produtividade, especialmente quando comparados ao espaçamento convencional de 0,50 m, que se tornou mais difundido no Brasil (Demétrio et al., 2008; Balbinot et al., 2015).

A redução do espaçamento entre linhas promove uma distribuição mais uniforme das plantas na área, otimizando o aproveitamento da radiação fotossinteticamente ativa, da água e dos nutrientes, e favorecendo o aumento da produtividade (Paszkiewicz, 1996; Rambo et al., 2004). Esse arranjo reduz o sombreamento entre plantas e diminui a competição intraespecífica, tanto dentro da linha quanto entre linhas, principalmente em comparação com sistemas de espaçamento mais amplo.

Por outro lado, a competição intraespecífica em altas densidades foi confirmada por Lopes et al. (2005), que observaram maior produtividade de grãos por planta na menor densidade (100 mil plantas ha⁻¹) em relação à maior densidade (220 mil plantas ha⁻¹), independentemente dos espaçamentos avaliados (0,5 e 0,8 m). No entanto, os autores ressaltam que o aumento no número de plantas por área não resultou em maiores produtividades de grãos por hectare, devido à capacidade de compensação das plantas em baixas densidades.

Em relação ao sorgo sacarino, Albuquerque et al. (2010) avaliaram os espaçamentos de 50, 70, 90 e 110 cm, associados a populações de 100.000 a 250.000 plantas ha⁻¹, e verificaram que o aumento na densidade populacional, até 250.000 plantas ha⁻¹,

proporcionou incremento na produtividade de biomassa verde. Entretanto, não houve aumento na massa de colmos por hectare, uma vez que o diâmetro dos colmos diminui com o aumento na densidade de plantas.

Resultados semelhantes foram observados por Emygdio et al. (2011), que, ao avaliarem o sorgo sacarino 'BR 506' em Pelotas – RS, constataram maior produção de colmos no espaçamento de 50 cm, independentemente da densidade populacional. A produtividade média foi de 70 t ha⁻¹ no espaçamento de 50 cm, contrastando com 48 t ha⁻¹ no espaçamento de 70 cm.

May et al. (2012), ao estudarem diferentes arranjos de plantas para a cultivar de sorgo sacarino 'CMSXS 647', concluíram que a redução do espaçamento entre linhas tem maior influência no aumento da produção de biomassa fresca de colmos do que o simples aumento da densidade de plantas.

3. OBJETIVOS

3.1. Objetivo geral

Avaliar o desempenho produtivo do sorgo silageiro em função de dois arranjos de espaçamento entre linhas (convencional e duplo) associados à adubação adicional com nitrogênio.

3.2. Objetivos específicos

Quantificar a produção de matéria seca total (MS) por hectare, em diferentes arranjos de plantio e aplicação adicional de nitrogênio.

Caracterizar os atributos morfológicos e biométricos das plantas de sorgo, incluindo altura de plantas, diâmetro do colmo, comprimento e diâmetro da panícula, massa fresca e seca das folhas, colmos e panículas, massa total das plantas (fresca e seca).

4. MATERIAL E MÉTODOS

4.1. Área de estudo

A pesquisa foi desenvolvida na Unidade de Pesquisa em Nutrição de Gado de Leite (UPNGL) (Figura 4), vinculada ao Centro de Ciências de Chapadinha da Universidade Federal do Maranhão (UFMA), localizada no município de Chapadinha, pertencente à Mesorregião Leste do Maranhão. A área experimental está georreferenciada pelas coordenadas 3°44'16" de latitude sul e 43°20'48" de longitude oeste.

O experimento foi realizado entre os dias 10 de janeiro de 2025 a 06 de maio de 2025.

Figura 4- Área do experimento

Fonte: Autor

Segundo a classificação climática de Köppen, o clima predominante na região é do tipo tropical quente e úmido, com uma média anual de precipitação de cerca de 1.600 mm, (INMET, 2022 e 2023). O padrão pluviométrico é marcado por uma estação chuvosa concentrada nos seis primeiros meses do ano, seguida de um período seco no segundo semestre.

A amostragem do solo foi realizada na profundidade de 0 a 20 cm (Tabela 1), sendo os parâmetros químicos utilizados para embasar as recomendações de calagem e adubação (Tabela 1). Quanto à textura, o solo da área experimental foi classificado como franco-arenoso.

Tabela 1. Atributos químicos do solo da área experimental antes da instalação do experimento, durante o ano 2024.

рН	M.O	P	K	Ca	Mg	Al	H+Al	SB	CTC total	V
em	g/dm³	mg/dm³					mmo	lc/dm³		%
$CaCl_2$										
4,4	16	9	3,1	10	13	2	36	26,1	62,1	42,02

4.2. Delineamento experimental

O experimento foi conduzido em delineamento em blocos casualizados, em esquema fatorial 2 × 2, com quatro tratamentos e seis repetições, totalizando 24 unidades experimentais (figura 5). Utilizou-se a cultivar de sorgo silageiro BRS 661. Os fatores avaliados foram dois arranjos espaciais de plantio e aplicação adicional de nitrogênio. Os arranjos de plantio consistiram em: (i) fileiras simples (figura 7), com espaçamento de 0,50 m entre fileiras e 0,20 m entre plantas na linha, e (ii) fileiras duplas (figura 6), com espaçamento de 0,20 m entre fileiras dentro da dupla e 1,00 m entre as duplas, mantendose 0,20 m entre plantas na linha. As aplicações de nitrogênio foram: (i) sem adubação adicional, com aplicação de 111 kg ha⁻¹ de ureia, fracionados em duas parcelas conforme recomendação técnica baseada na análise do solo (figura 10); e (ii) com adubação adicional, com aplicação inicial de 111 kg ha⁻¹ de ureia conforme a análise de solo, acrescida de uma aplicação adicional de 30 kg ha⁻¹, totalizando 141 kg ha⁻¹, distribuídos em três aplicações ao longo do ciclo da cultura nos estágios fenológicos (V6;V8 e V11 respectivamente)

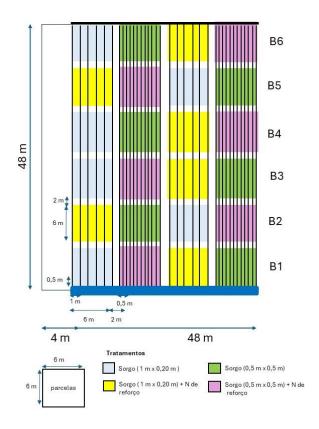


Figura 5- Croqui do experimento

Figura 6- Fileiras duplas

Figura 7- Fileiras simples

O preparo do solo foi realizado por meio de aração, gradagem e nivelamento da área experimental. A correção da acidez foi feita com base nos resultados da análise de solo, aplicando-se calcário dolomítico na dose de 1,9 t ha⁻¹, com PRNT de 90%, incorporado ao solo 30 dias antes da semeadura.

A adubação de fundação foi realizada segundo as recomendações para a cultura do sorgo (BORÉM et al., 2014), e os resultados da análise de solo. Na adubação de plantio, foram aplicados 400 kg/ha de superfosfato simples (P₂O₅) (figura 8) e 33 kg/ha de cloreto de potássio (K₂O) (figura 9), com base na recomendação para a cultura. A ureia mais cloreto de potassio (Figura 11) foi utilizada na adubação de cobertura e como aplicação adicional utilizou-se apenas ureia, 30 kg/ha. O controle da vegetação espontânea foi realizado exclusivamente por meio de roçagem manual. A semeadura foi manual, respeitando os espaçamentos determinados para cada arranjo, mantendo uma população de 120.000 plantas ha⁻¹ em todos os tratamentos, garantindo a mesma densidade de plantas. A colheita foi realizada no estádio fenológico de grão pastoso, que representa o ponto de máximo valor nutricional para a forragem de sorgo.

Figura 8- Superfosfato simples

Figura 10- Ureia

Figura 9- Cloreto de potássio

Figura 11- Ureia + KCl

4.3. Características avaliadas

Avaliações agronômicas: Foram coletadas todas as plantas de um metro linear do centro das parcelas eliminando o efeito bordadura.

- Ciclo total (CT): número de dias do plantio até a colheita.
- Altura de plantas (ALT): medida do solo até o ápice da panícula, em metros, utilizou-se trena.
- Diâmetro do colmo (DC): medido com paquímetro no primeiro nó acima do solo.
- Diâmetro de panícula (DP): medido com paquímetro, no ponto de maior largura.
- Peso de folhas fresca (PSF): obtido por meio de pesagem direta em balança.
- Peso de colmo fresco (PC): obtido por pesagem direta em balança.
- Peso de panículas frescas (PPF): obtido por pesagem direta em balança.
- Número de plantas reprodutivas (NPR: obtido por meio de contagem direta.
- Número de plantas vegetativas (NPV): obtido por meio de contagem direta.
- Número total de plantas (NP): obtido por meio de contagem direta.
- Comprimento de panícula (CP): obtido por medida direta com fita métrica.

Avaliações produtivas:

- Matéria seca (MS): determinada por amostras de 500g de material fresco (para se determinar o ponto de MS no momento das coletas), secadas em estufa ventilada a 65 °C por 72 horas, até peso constante.
- Produção de matéria seca total (MS t ha⁻¹).
- Produção de grãos (t ha⁻¹) e participação percentual na MS total.

4.4. Procedimentos estatísticos

Os dados foram analisados por meio do software SISVAR 5.5 (Ferreira, 2019). Inicialmente, foi aplicada a análise de variância (ANOVA) para verificar os efeitos principais do arranjo de plantio (A), da aplicação adicional de nitrogênio (B) e da interação entre esses fatores ($A \times B$) sobre as variáveis morfoagronômicas do sorgo.

Como não foi detectada interação significativa entre os fatores (p > 0,05), a análise prosseguiu com a avaliação dos efeitos principais isolados. As médias dos tratamentos foram comparadas pelo teste de Tukey a 5% de probabilidade ($p \le 0,05$).

5. Resultados e discussão

Não foram observados efeitos (p > 0,05) do arranjo de plantio (A), da aplicação adicional de nitrogênio (B), nem da interação entre esses fatores (A \times B) sobre as variáveis morfoagronômicas avaliadas na cultura do sorgo (Tabela 2). Entre as variáveis analisadas, incluem-se altura de planta (AP), diâmetro do colmo (DC), comprimento da panícula (CP), diâmetro da panícula (DP), massa fresca de folhas (MFF), massa fresca do colmo (MFC), massa fresca de panículas (MFP), massa fresca total (MFT), massa seca de folhas (MSF), massa seca do colmo (MSC), massa seca de panículas (MSP), massa seca total (MST) e produção de matéria seca por hectare (PMS). Os altos valores de p indicam que os tratamentos aplicados não influenciaram estatisticamente o desempenho morfofisiológico das plantas (Tabela 2).

Tabela 2. Valores de p da análise de variância para as variáveis morfoagronômicas do sorgo em função do arranjo de plantio (A), aplicação adicional de nitrogênio (B) e sua interação (A \times B).

Variáveis (y)	Arranjo de	Aplicação adicional	Interação
	plantio	de N	$(A) \times (B)$
	(A)	(B)	
	P	P	P
Altura das plantas (m)	0,9033	0,3469	0,7947
Diâmetro do colmo (cm)	0,5160	0,7526	0,5304
Comprimento da Panícula	0,1542	0,8273	0,8274
Diâmetro da Panícula	0,2637	0,9873	0,8367
Massa fresca de folhas(g)	0,8131	0,5295	0,3565
Massa fresca do colmo (g)	0,7146	0,7048	0,3194
Massa fresca das panículas (g)	0,0894	0,6675	0,3967

Massa fresca total (g)	0,5658	0,7483	0,3080
Massa seca da folha (g)	0,8705	0,7243	0,2343
Massa seca do colmo (g)	0,8486	0,6268	0,3179
Massa seca das panículas (g)	0,0877	0,6493	0,4668
Massa seca total (g)	0,6729	0,7192	0,3123
Produção total de matéria seca	0,6729	0,7192	0,0930
(kg/ha)			

Tabela 3. Médias das variáveis morfoagronômicas do sorgo em função do arranjo de plantio (linhas simples e duplas).

Variáveis (y)	Arranjo de	plantio (A)
_	Linhas simples	Linhas duplas
	(0.5 m x 0.5 m)	$(1m \times 0.2m \times 1m)$
Altura das plantas (m)	2,07	2,06
Diâmetro do colmo (cm)	1,01	0,95
Comprimento da Panícula	13,02	14,8
Diâmetro da Panícula	3,53	4,01
Massa fresca de folhas (g)	145,2	149,82
Massa fresca do colmo (g)	610,48	645,93
Massa fresca das panículas (g)	87,36	120,95
Massa fresca total (g)	843,04	916,71
Massa seca da folha (g)	77,51	78,64
Massa seca do colmo (g)	398,65	411,95

Massa seca das panículas (g)	55,85	77,73
Massa seca total (g)	532,02	568,33
Produção total de matéria seca	10640,43	11366,65
(kg/ha)		

De forma semelhante, a aplicação adicional de nitrogênio (N) também não apresentou efeito significativo (p > 0,05) sobre as variáveis morfoagronômicas analisadas. As médias das variáveis AP, DC, CP, DP, bem como os diferentes componentes da biomassa (massa fresca e seca das folhas, colmos e panículas) e de produtividade (produção total de matéria seca), não diferiram estatisticamente entre os tratamentos com e sem adição de N (Tabela 4).

Tabela 4. Médias das variáveis morfoagronômicas do sorgo em função da aplicação adicional de nitrogênio (com e sem).

Variáveis (y)		Aplicação adicional de N (B)
T	sem	com
Altura das	2,02	2,11
plantas (m)		
Diâmetro do	0,96	0,98
colmo (cm)		
Comprimento da	14,03	13,77
Panícula		
Diâmetro da	3,77	3,78
Panícula		
Massa fresca de	153,7	141,32
folhas (g)		
Massa fresca do	646,57	609,83
colmo (g)		
Massa fresca	100,1	108,21
das panículas		
(g)		

Massa fresca	900,38	859,37
total (g)		
Massa seca da	79,3	76,84
folha (g)		
Massa seca do	422,3	388,3
colmo (g)		
Massa seca das	64,01	69,57
panículas (g)		
Massa seca total	565,62	534,73
(g)		
Produção total	11312,48	10694,6
de matéria seca		
(kg/há)		

No entanto, não foram observadas diferenças significativas entre os níveis dos fatores para nenhuma das variáveis analisadas, o que indica que, nas condições experimentais adotadas, tanto o arranjo de plantio quanto a aplicação adicional de nitrogênio não influenciaram o desempenho morfoagronômico da cultura do sorgo. O mesmo resultado foi observado por Albuquerque et al. (2010), trabalhando com sorgo sacarino, evidenciou que, não houve aumento na massa de colmos por hectare, uma vez que o diâmetro dos colmos diminue com o aumento na densidade de plantas.

May et al. (2012), estudando diferentes arranjos de plantas para a cultivar de sorgo sacarino 'CMSXS 647', mostrou que a redução do espaçamento entre linhas tem maior influência no aumento da produção de biomassa fresca de colmos do que o simples aumento da densidade de plantas. Mostrando que a produtividade não é afetada em função do espaçamento, quando a densidade é mantida.

Já o fato da adubação adicional de nitrogênio não ter afetado nenhuma das características morfoagronômicas, tais resultados podem ser explicados pela máxima absorção de N e P durante as fases de desenvolvimento vegetativo e formação dos grãos, e menor absorção desses nutrientes no período compreendido entre a emissão da panícula e o início da formação dos grãos, em que os nutrientes são, quase totalmente, translocados para os grãos (Coelho et al., 2002).

FERNANDES et al. (1991) em estudo com sorgo em solução nutritiva de nitrogênio, verificaram resposta da cultura ao incremento da concentração de nitrogênio

na solução e que a aplicação de 120 mg N por L-1 proporcionou maior diâmetro do colmo à cultivar EA 116, onde as plantas que receberam aplicação de nitrogênio no início do desenvolvimento vegetativo nos estádios (E1, E3 e E4) apresentaram maior incremento no diâmetro do caule do que as que receberam adubação no momento mais tardio.

O sistema de cultivo de sorgo em espaçamento linhas duplas mostrou-se viável, uma vez que o tratamento não prejudica a produtividade da cultura, todavia é um sistema indicado para pequenos e médios produtores que dispõem de pequenas áreas, pouca mão-de-obra e baixo nível tecnológico, uma vez que o sistema de cultivo em espaçamento duplo pode ser adaptado para utilização de irrigação localizada.

Conclusão

O arranjo de plantio em linhas duplas pode ser utilizado como alternativa para cultivo de sorgo silageiro sem perdas de produtividade, quanto a aplicação adicional de nitrogênio (N) deve ser aplicada nos estágios de melhor absorção de nutrientes que para o sorgo é entre estágio fenológico V4 e estágio fenológico V8.

REFERÊNCIAS

E. L. CARMO et al.; Agronomic performance of grain sorghum cultivated in double rows space on brazilian Cerrado. Revista Caatinga, v. 33, n. 2, p. 422-432, 2020.

ALBUQUERQUE, C. J. B.; CAMARGO, R. DE; SOUZA, M. F. DE. Macronutrient uptake in sorghum plants in different arrangements. Revista brasileira de milho e sorgo, v. 12, n. 1, p. 10–20, 2013.

BALBINO, L.C.; BARCELLOS, A.O.; STONE, L.F. Marco referencial: integração lavourapecuária floresta (ILPF). Brasília: Embrapa, p. 130, 2011.

BALBINOT, A., DE, S., COSTA, J., KOSINSKI, C., PANISON, F., DEBIASI, H.Y BORÉM A. (org). Melhoramento de espécies cultivadas, 2 (2a ed.). (pp. 605-658).

White, J. S., K. K. Bolsen & G. Posler. 1991. Forage sorghumdry matter disappearance as influenced by plant partproportion. Animal Feed Science Technology, (p:312-322).

BECKMANN, M. Z. Produtividade e características agronômicas de cultivares de milho safrinha sob plantio direto no Estado de Goiás. Rev. Acad., Ciênc. Agrárias. Ambientais, Curitiba-PR, v. 8, n. 1, p. 77-84, mar. 2010.

BOEF, W. S. Biodiversidade e agro biodiversidade. In: BOEF, W. S. et al. (Org.) Biodiversidade e agricultores: fortalecendo o manejo comunitário. Porto Alegre: L&PM, 2007. cap. 2, p. 36-40.

BORÉM, A.; PIMENTEL, L. D.; PARRELLA, R. A. dá C. (Ed.). Sorgo do plantio à colheita. Viçosa, MG: UFV, 2014. p. 275.

BORÉM, A.; PIMENTEL, L.; PARRELLA, R. Sorgo: do plantio à colheita. Editora UFV, Church, D. C. The ruminant animal digestive physiology and nutrition. Prentice Hall: New Jersey, 1988, 564p. 5 p, 2014.

BORÉM, ALUÍZIO; PIMENTEL, LEONARDO DUARTE; PARRELLA, RAFAEL AUGUSTO DA COSTA. SORGO do plantio a colheita. Viçosa: Ufv, 2014. 275 p.

CARMO, E. L.; SOUSA, J. V. A. D.; FERREIRA, C. J. B.; BRAZ, G. B. P.; SIMON, G.A. CEPEA - CEPEA - Centro de Estudos Avançados em Economia Aplicada. (2021).

COSTA, M. B. B. dá (Coord.). Adubação verde no sul do Brasil. Rio de Janeiro: AS-PTA, 1992. 346 p. Desempenho de híbridos de milho submetidos a diferentes espaçamentos e

densidades Elias, O. F. A. e S., Leite, M. L. D. M. V., Azevedo, J. M., Silva, J. P. S. de S., Nascimento,

COELHO, A.M.; WAQUIL, J.M.; KARAM, D.; CASELA, C.R.; RIBAS, P.M. Seja o doutor do seu sorgo. Informações Agronômicas, n.100, p.1-12, 2002.

COSER, E. Avaliação da incidência de pragas e moléstias na cultura do milho (Zea mays L.) crioulo e convencional no município de Xaxi– SC. Chapecó. 2010. Monografia (Graduação) – Universidade Comunitária da Região de Chapecó, UNOCHAPECÓ, 2010.

Cultivares de milho e população de plantas que afetam a produtividade de espigas verdes Acta Scientiarum: Agronomy, v. 32, p. 81-86, 2013. MEIRA, J. L.; AZEVEDO, J. T.; SILVA, J.; SCHAFFERT, R. E.; MURAD, A. M.; CARVALHO, L. J. C. B. Espaçamento e densidade do sorgo granifero. In: PROJETO NEUMANN, M. et al. Efeito do tamanho da partícula e do tipo de silo sobre o valor nutritivo da silagem de sorgo (Sorghum bicolor, L. Moench). Revista Brasileira de Milho e Sorgo, Sete Lagoas, v. 4, n. 2, p. 224- 242, 2005.

CUNHA, F. L. Sementes da paixão e as políticas públicas de distribuição de sementes na Paraíba. 2013. 184f. Dissertação (Mestrado em Ciências) — Universidade Federal Rural do Rio de Janeiro, Seropédica.

DA SILVA, G. F.; DE OLIVEIRA, F. H. T.; PEREIRA, R. G.; DIÓGENES, T. B. A.; JÚNIOR, J. N.; de SOUZA FILHO, A. L. Doses de nitrogênio e de fósforo recomendadas para produção econômica de milho verde em Mossoró-RN. Magistra, Cruz das Almas – BA, V. 26, n.4, p. 467- 481, Out./Dez. 2014.

DA SILVA, W. W.; MELIDO, R. C. N.; DE SOUZA, A. R.; DOS SANTOS, T. M.; CLEMENTE, J. M.; & MACHADO, M. G. (2019). Avaliação de adubos protegidos na produtividade do milho. Humanidades e tecnologia (finom), v. 1, n. 18, p. 7-16, 2019.

EICHOLZ, E. D.:; Aires R. F.; Migon. L.; Eicholz M.; Produtividade de variedades de milho de polinização aberta no RS. In: XXXI CONGRESSO NACIONAL DE MILHO E SORGO. Anais... Bento Gonçalves, p. 1436 – 1439, 2016.

FARIAS, C. M. Q. de; FERNANDES, V.; GOMES, S. de M. S.; JUNIOR, A. I.; BALDISERA, S. S.; SCHWENGBER, R. P.; NASCIMENTO, G. A. do. Comportamento de milho híbrido para silagem em diferentes condições de sucessão de culturas no

município de Umuarama-pr. Revista Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, Umuarama, v. 19, n. 4, p. 227-230, out./dez. 2016.

FERNANDES, V.L.B.; NUNES, L.A.P.; MARIO FILHO, M.; SOUZA, V.L.; FERNANDES, M.B. Absorção e utilização de nitrogênio em planta de sorgo cultivado em solução nutritiva. Ciência Agronômica, v.22, p.89-96, 1991.

FERREIRA, A.O.; MORAES SÁ, J.C.; HARMS, M.G.; MIARA, S.; BRIEDIS, C.; NETTO, C.Q.; SANTOS, J.B.; CANALLI, L.B. Carbon balance and crop residue management in dynamic equilibrium under a no-till system in campos gerais. Revista Brasileira de Ciência do Solo, v.36, p.1583-1590, 2012.

FRANCHINI, J. Espaçamento reduzido e plantio cruzado associados a diferentes densidades de plantas em soja. Semina: Ciências Agrárias. v. 36, n. 5, p. 2977-2986, 2015.CONAB. Acompanhamento Da Safra Brasileira De Grãos Safra 2019/20 – Décimo Segundo Levantamento, setembro 2020. Disponível em: www.conab.gov.br.

G. F. do & Simplício, J. B. (2017). Características Agronômicas De Cultivares De Sorgo Em Sistema De Plantio Direto No Semiárido De Pernambuco. Revista Ciência Agrícola, 14(1), 29. https://doi.org/10.28998/rca.v14i1.2318.

HORST, E.H.; BUMBIERIS JR, V.H.; NEUMANN, M.; SOUZA, A.M. et al. Agronomic characteristics of maize hybrids (Zea mays, L.) at different maturity stages. Semina: Ciênc. Agrár., v.41, Supl.5, p.2273-2284, 2020.

BERNARDES, T.F.; DO RÊGO, A.C. Study on the practices of silage production and utilization on Brazilian dairy farms. Journal of Dairy Science v.83, p.1264-1273, 2014.

LIMA, R.; MENEZES, V. Utilização da Adubação Verde na Agricultura Sustentável.

SANTOS, F. G. (2003). Cultivares de sorgo. Germinal, 71(140), 6-90.

M. M. D., & Bezerra, H. F. C. (2013). Características agronômicas e eficiência do uso da chuva em cultivares de sorgo no semiárido. Ciência Rural,43(10), 1771-1776.

MACEDO, C. H. O. Et al. Produção e composição bromatológica do sorgo (sorghum bicolor) cultivado sob doses de nitrogênio production and chemical composition of sorghum(sorghum bicolor) o experimento foi executado na estação experimental do instituto nacional do semiárido (. V. 61, n. 234, p. 209–216, 2012.

NEUMANN, M., RESTLE, J., FILHO, D. C. A., MACCARI, M., SOUZA, A. N. M., PELLEGRINI, L. G., FREITAS, A. K. (2005). Produção de forragem e custo de produção da pastagem de sorgo (Sorghum bicolor, L.), fertilizada com dois tipos de adubo, sob pastejo contínuo. Revista Brasileira de Agrociência, 11(2),215- 220 Oliveira, P. D. R. et al. Características agronômicas de cultivares de sorgo (Sorghum bicolor (L) Moench) sob três doses de nitrogênio. Pesquisa Agropecuária Tropical, v. 35,n. 1, p. 45–53, 2005

PASZKIEWICZ, S. Narrow row spacing influence on com yield. In: ANNUAL CORN AND SORGHUM RESEARCH CONFERENCE, 51., 1996, Chicago. Chicago: IL, 1996. p.130–138CAMPOS, M. C. C.; SILVA, V. A. da; CAVALCANTE, Í. H. L.;

PEIXOTO, A.M.; PEDREIRA, C.G.S.; MOURA, J.C.; FARIA, V.P. A planta forrageira no sistema de produção. In: 17º Simpósio sobre manejo de pastagem. Anais...FEALQ, Piracicaba, 2001.

PERAZZO, A. F. et al. Agronomic Evaluation of Sorghum Hybrids for Silage Production Cultivated in Semiarid Conditions. Frontiers in Plant Science, v. 8, n. June, p. 1–8, 2017.

PERAZZO, A. F., Santos, E. M., Pinho, R. M. A., Campos, F. S., Ramos, J. P. D. F., Aquino. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 43, p. 1691-1697, 2008.

RAMBO, L.; COSTA, J. A.; PIRES, J. L. F.; PARCIANELLO, G.; FERREIRA, F. G. Estimativa do potencial de rendimento por estrato do dossel da soja, em diferentes arranjos de plantas. Ciência Rural, Santa Maria, v. 34, n. 1, p. 33-40, 2004.

RODRIGUES, J. Cultivo do sorgo. 5. ed. Sete Lagoas: Embrapa Milho e Sorgo,2012. (Embrapa Milho e Sorgo. Sistemas de produção, 2). AFZAL, M., AHMAD, A., e AHMAD, A.H. Efeito do nitrogênio no crescimento e produtividade da forragem de sorgo (Sorghum bicolor (l.) Moench cv.) Sob sistema de três estacas. Cercetari Agron. Moldávia, v. 45, n.4, p. 57-64, 2012.

SANTOS, F. D., CASELA, C. R., & WAQUIL, J. M. (2005). Melhoramento de sorgo. In Sorgo: relatório anual 72/73/74/75. Belo Horizonte: EPAMIG, 1977. p. 105-121.

DEMÉTRIO, C, S.; FORNASIERE FILHO, D.; CAZETTA, J. O.; CAZETTA, D. A.SANTOS, F. G.; RODRIGUES, J. A. S.; SCHAFFERT, R. E.; LIMA, J. M. P.; PITTA, G. Desempenho de híbridos de milho submetidos a diferentes espaçamentos e densidades populacionais. Pesquisa Agropecuária Brasileira, Brasília, DF, v. 43, p. 1691-1697, 2008.

SIMÕES, W. L.; OLIVEIRA, A. R.; GUIMARÃES, M. J. M.; SILVA, J. S.; SILVA, W. O.; OLIVEIRA, C. R. S.; VOLTOLINI, T. V.; BARBOSA, K. V. F. Arranjo populacional do sorgo forrageiro irrigado para um cultivo eficiente no Semiárido brasileiro. Brazilian Journal of Development, Curitiba, v.8, n.3, p. 16305-16320, 2022.

SMYTH, T.J.; CRAVO, M.S.; MELGAR, R.J. Nitrogen supplied to corn by legumes in a Central Amazon Oxisol. Tropical Agriculture, London, v.68, n.4, p.366-372, 1991.

TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 5a ed. Porto Alegre: Artmed, 2013.

Tecnologias potenciais para uma agricultura sustentável / editores, Márcia do Vale BarretoFigueiredo [et al.]. – Recife, PE: Instituto Agronômico de Pernambuco – Ipa/Emater/SeagriAL, 2013. 356p

V. E.; CASELA, C. R.; FERREIRA, A. S. BRS Ponta Negra variedade de Sorgo Forrageiro. Comunicado Técnico, EMBRAPA, Sete Lagoas, MG, setembro, 2007. 6p.

VIANA, A. C. Et al. Avaliação de cultivares de milho e de sorgo para silagem. V. 01, n. 266, p. 3–6, 2012.

VIEIRA, M.A.; CAMARGO, M.K.; DAROS, E.; ZAGONEL, J.; KOEHLER, H.S. Cultivares de milho e população de plantas que afetam a produtividade de espigas verdes produtividade de espigas verdes. Acta Scientiarum Agronomy, v. 32, n. 1, p. 81-86, 2010.