UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA CURSO DE MATEMÁTICA - LICENCIATURA

MATHEUS DE SOUSA SILVA

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DE MATRIZES COM O SCILAB

MATHEUS DE SOUSA SILVA

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DE MATRIZES COM O SCILAB

Monografia apresentada ao Curso de Matemática - Licenciatura da Universidade Federal do Maranhão — UFMA, como requisito parcial para obtenção de grau de Licenciado em Matemática. Orientado por Profa. Dra. Valeska Martins de Souza.

Ficha gerada por meio do SIGAA/Biblioteca com dados fornecidos pelo(a) autor(a).

Diretoria Integrada de Bibliotecas/UFMA

Silva, Matheus de Sousa.

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DE MATRIZES COM O SCILAB / Matheus de Sousa Silva. - 2022.
70 p.

Orientador(a): Valeska Martins de Souza. Monografia (Graduação) - Curso de Matemática, Universidade Federal do Maranhão, São Luís - MA, 2022.

1. Ensino. 2. Matrizes. 3. Scilab. 4. Sequência Didática. I. Souza, Valeska Martins de. II. Título.

MATHEUS DE SOUSA SILVA

UMA SEQUÊNCIA DIDÁTICA PARA O ENSINO DE MATRIZES COM O SCILAB

Monografia apresentada ao Curso de Matemática - Licenciatura da Universidade Federal do Maranhão — UFMA, como requisito parcial para obtenção de grau de Licenciado em Matemática.

Aprovada em 16/06/2022

BANCA EXAMINADORA

Prof^a. Dr^a. Valeska Martins de Souza (Orientadora)
Universidade Federal do Maranhão

Prof. Dr. Antonio José da Silva
Universidade Federal do Maranhão

Prof. Me. Cleber Araujo Cavalcanti

Universidade Federal do Maranhão

AGRADECIMENTOS

Agradeço minha família, que me proporcionou construir essa jornada, aos meus amigos que estiveram comigo em todos os desafios, conquistas e aprendizados, aos meus professores, corpo docente e demais servidores da Universidade Federal do Maranhão- CAMPUS BACANGA que nos apoiaram direta e indiretamente, em especial à Professora Valeska Martins de Souza pela colaboração fundamental a esse trabalho.

"Diga-me e eu esquecerei, ensina-me e eu poderei lembrar, envolva-me e aprenderei". Benjamin Franklin **RESUMO**

O objetivo geral do trabalho é propor uma sequência didática para o ensino de

matrizes utilizando um ambiente computacional. Em particular, utiliza-se o SCILAB, o

seu uso pode possibilitar várias potencialidades no ensino de matemática, motivando

os discentes a utilizar ferramentas tecnológicas na resolução de problemas matriciais,

a saber: potências de matrizes, determinantes, classificação de sistemas lineares e

aplicação das propriedades das operações matriciais.

Palavras-Chaves: Scilab, matrizes, ensino, sequência didática.

ABSTRACT

The general objective of the works is to propose a didactic sequence for the teaching of matrices using a computational environment. In particular, the SCILAB is used, its use can enable several potentialities in the teaching of mathematics, motivating students to use technological tools in solving matrix problems, namely: matrix powers, determinants, classification of linear systems and application of properties of matrix operations.

Keywords: Scilab, matrices; teaching; didactic sequence.

SUMÁRIO

1.	INTRODUÇÃO	12
2.	O SCILAB	15
3.	MATRIZES	19
3.1	Matrizes no Scilab	20
3.2	Matrizes Especiais	21
3.3	Álgebra das Matrizes	24
3.4	Propriedades das Operações Matriciais	28
4.	DETERMINANTES	38
5 \$	SISTEMAS LINEARES	48
5.1	Classificação de um sistema linear	49
5.2	Sistemas lineares e matrizes	49
5.3	Uso do Scilab na resolução de sistemas lineares	51
6.	SEQUÊNCIA DIDÁTICA DAS HABILIDADES DA BNCC PARA O ENSIN	10 DE
MΑ	ATRIZES	58
6.1	Contextualizando a BNCC e o DCTM	58
6.2	Sequência Didática nas Unidades Temáticas: Números e Álgebra	63
6	S.2.1 Sequência didática – Habilidade EM13MAT301	64
6	S.2.2 Sequência didática – Habilidade EM13MAT505	66
7.	CONSIDERAÇÕES FINAIS	69
RF	FERÊNCIAS	70

1. INTRODUÇÃO

Matrizes, determinantes e sistemas lineares são temas importantes e possuem várias aplicações em diversas áreas do conhecimento, tais como matemática, engenharias, ciência da computação, etc. Geralmente, o ensino tradicional de matrizes não utiliza contextualização e nem o uso de softwares matemáticos e além do avanço das tecnologias da informação e comunicação (TICs) e da inserção delas em sala de aula, muitas escolas não possuem laboratório de matemática e internet.

O objetivo geral deste trabalho é propor uma sequência didática para o ensino de matrizes utilizando um ambiente computacional tendo o Scilab como ferramenta computacional. Tendo como objetivos específicos: apresentar o conceito de matriz, determinante e sistemas lineares; desenvolver operações matriciais e resolver sistemas lineares e outros problemas computacionais, aplicando os comandos do Scilab.

A escolha deste tema se deve ao fato de dificuldades encontradas pelos alunos em entender o conceito de matrizes no Ensino Médio que observei no Estágio Supervisionado e a escolha do software Scilab se deve ao fato de ser um software de distribuição gratuita e possuir linguagem simples e de fácil aprendizado.

Os Parâmetros Curriculares Nacionais – PCN's para a área de Matemática no Ensino Fundamental estão pautados por princípios decorrentes de estudos, pesquisas, práticas e debates desenvolvidos nos últimos anos. Dentre eles:

No ensino da Matemática, destacam-se dois aspectos básicos: um consiste em relacionar observações do mundo real com representações (esquemas, tabelas, figuras); outro consiste em relacionar essas representações com princípios e conceitos matemáticos. Nesse processo, a comunicação tem grande importância e deve ser estimulada, levando-se o aluno a "falar" e a "escrever" sobre Matemática, a trabalhar com representações gráficas, desenhos, construções, a aprender como organizar e tratar dados [...]. (BRASIL, 1997, p.19).

A Base Nacional Comum Curricular – BNCC do Ensino Médio para a área de matemática e suas tecnologias tem como objetivo consolidar os conhecimentos adquiridos no Ensino Fundamental e construir um aprendizado que condiz com a realidade e aplicado em diversos contextos (BRASIL, 2018). Ela propõe que os estudantes utilizem tecnologias, como calculadoras e planilhas eletrônicas desde os anos iniciais para o desenvolvimento do pensamento computacional:

Cabe ainda destacar que o uso, de tecnologias possibilita aos estudantes alternativas de experiências variadas e facilitadoras de aprendizagens que reforçam a capacidade de raciocinar logicamente, formular e testar conjecturas, avaliar a validade de raciocínio e construir argumentações (BRASIL, 2018, p.536).

Souza e Gonçalves (2018), afirmam que no ensino, o uso de Tecnologias da Informação e Comunicação (TICs) tem sido cada vez mais frequente e que as vantagens para a utilização da tecnologia são muitas, entre elas, possibilidades de acompanhar os avanços da ciência, além de promover debates sobre assuntos atuais, despertando no aluno consciência crítica e leitura de mundo. Para Sá e Machado (2017, p.1) "o uso das tecnologias na sala de aula vem se tornando uma ferramenta de grande importância pois consegue auxiliar tanto o professor quanto o aluno na explicação e na compreensão dos conteúdos."

Dentre as TICs disponíveis destacam-se os softwares educativos possuem um grande potencial no processo de ensino e aprendizagem. Aceitando a inclusão tecnológica em salas de aulas, a proposta de usar o Scilab no ensino do desenvolvimento de matrizes, no Ensino Médio e Superior justifica-se pela forma como essa área do conhecimento pode vir a ser aplicada posteriormente pelo aluno, em um futuro profissional, por exemplo, em outros campos da educação ou mesmo em situações cotidianas.

No que diz respeito à utilização do Scilab no ensino de matrizes, tem-se na literatura muitos trabalhos acadêmicos, destacam-se o trabalho de Silva Neto que utilizou o software Scilab para apresentar interpretações geométricas das operações com matrizes (SILVA NETO, 2019), Costa apresentou diversas aplicações práticas do estudo de matrizes e sistemas lineares que podem ser incorporados à metodologia de ensino e contextualização destes conteúdos, tendo o software Scilab, como ferramenta computacional auxiliar na execução rápida e eficaz nas aplicações expostas (COSTA, 2017) e no artigo de Siqueira *et al* percebe-se a visualização da aplicabilidade dos conceitos matriciais utilizando codificação de imagens digitais no Scinotes (SIQUEIRA *ET AL*, 2020).

Este trabalho está organizado em sete sessões: a segunda sessão apresenta o software Scilab; a terceira sessão tem o propósito de mostrar o conceito de matriz, tipos de matrizes, a álgebra das matrizes e suas propriedades e todas as sintaxes no Scilab; a quarta sessão apresenta a definição e propriedades do determinante; a quinta sessão apresenta a definição de sistemas lineares e sua classificação; a sexta sessão apresenta uma sequência didática para o ensino de matrizes, determinantes e sistemas lineares para o Ensino Médio. Por fim, na sétima sessão são apresentadas as considerações finais da monografia.

2. O SCILAB

As informações sobre o Scilab foram adaptadas dos trabalhos de Paulo Sérgio Pires (PIRES, 2004); Bruno Costa (COSTA, 2017) e o livro colaborativo (REA-MAT,2020). O Scilab (Scientific Laboratory) é um software científico para computação numérica. É gratuito (*free software*) desde quando passou a ser disponível na Internet, em 1994, estando disponível também o seu código fonte (*open source software*). Além da distribuição com o código fonte, há também distribuições pré-compiladas do Scilab para vários sistemas operacionais.

Para utilizar o Scilab é necessário familiarizar-se com a sua interface, após clicar no ícone do Scilab, ele é carregado, a Figura 2.1 apresenta sua tela inicial o prompt inicial representado pelo símbolo -->, é exibido na tela. A partir daí, já é possível escrever os comandos do usuário.

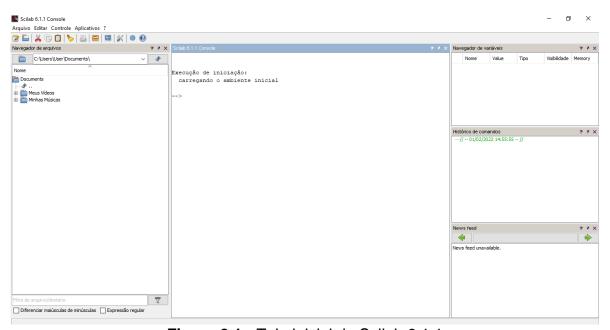


Figura 2.1 - Tela inicial do Scilab 6.1.1

Fonte: Elaborada pelo autor

O ambiente de trabalho no Scilab é composto por várias janelas:

- O Console para fazer cálculos,
- O histórico de comandos
- O navegador de arquivos
- O navegador de variáveis

Os menus de comandos listado abaixo são adaptados do trabalho de Costa (2017). O Scilab possui também algumas funções básicas que se distribuem em menus de comando, que devem ser mencionadas por sua importância, são elas:

- Arquivo: que permite executar, abrir um arquivo, carregar ambiente, salvar ambiente, alterar o diretório atual, exibir o diretório atual, configuração de página, imprimir e sair.
- Controle: que permite retomar, abortar e interromper.
- Editar: que permite recortar, copiar, colar, esvaziar a área de transferência, selecionar tudo, mostrar/esconder a barra de ferramentas, limpar o histórico, limpar o console e preferências.
- Aplicativos: que permite utilizar os seguintes aplicativos: SciNotes, Xcos, Tradutor de Matlab para Scilab, Gerenciador de móduos – ATOMS, Navegador de variáveis, Histórico de comandos e Navegador de arquivos.
- Help: Após executado este comando, será aberta uma janela contendo uma lista de todas as funções presentes.

O Quadro 2.1 - apresenta os operadores algébricos.

Quadro 2.1 Operadores aritméticos

Operador	Significado	Exemplo	Resultado
+	Adição	> 2 + 5	ans =
			7.
_	subtração	> 2 − 5	ans =
			-3.
*	multiplicação	> 2 * 5	ans =
			10.
/	Divisão à direita	> 2/5	ans =
			0.4
\	Divisão à esquerda	> 2\5	ans =
			2.5
^ OU **	potenciação	> 2 ⁵	ans =
			32.

Observação 2.1 No Scilab, na divisão à direita a/b efetua a divisão de a por b, enquanto que na divisão à esquerda $a \setminus b$ efetua a divisão de b por a.

Quanto as variáveis, elas podem ser definidas e utilizadas diretamente no console, são representadas por identificadores que são cadeias de caracteres alfanuméricos. A variável deve ser definida por uma palavra única, com até 24 caracteres, não deve ser iniciada com algarismo. O SCILAB, assim como outras linguagens, é case sensitive, difere letras maiúsculas de letras minúsculas.

Quando um comando de atribuição como por exemplo:

$$-->x = 2$$

é digitado no Scilab, a variável x é armazenada em uma área da memória do Scilab denominada de **Espaço de Trabalho** (do inglês, *Workplace*).

A interação com o usuário com o Scilab pode ocorrer de duas formas:

- os comandos são digitados diretamente na janela de comandos e executados imediatamente, nessa forma o Scilab funciona como uma sofisticada calculadora gráfica.
- ou um conjunto de comandos é digitado em arquivo de texto e em seguida levado para o ambiente Scilab e executado, nessa forma, o Scilab funciona como um ambiente de programação.

O Quadro 2.2 apresenta as funções mais comuns, a lista completa se encontra na seção Funções Elementares da Ajuda do Scilab.

Quadro 2.2 Funções Elementares do Scilab

Função	Significado
exp(x)	exponencial
log(x)	logaritmo (natural)
log10(x)	logaritmo (base 10)
sin(x)	seno
cos(x)	cosseno
tan(x)	tangente

Existem variáveis especiais que são pré-definidas no Scilab, elas são protegidas e não podem ser apagadas. Algumas destas variáveis são prefixadas com o caractere % e podem ser vistas através do comando *who*. O Quadro 2.3 Mostra algumas variáveis.

Quadro 2.3 Variáveis Especiais

Variáveis	Descrição
%pi	pi = 3.1415927
%e	número de Euler = 2,718281828
%eps	Precisão de máquina
%inf	Infinito
%i	Unidade imaginária
%nan	Significa uma indeterminação

3. MATRIZES

Bernardes e Roque (2016) destacam que ao comparar a ordem de alguns conceitos matemáticos com a ordem com a qual os mesmos surgiram na história, é comum se deparar com uma inversão. O conceito de matriz surgiu depois das noções de determinantes, sistemas lineares, transformações lineares e formas quadráticas. As autoras ressaltam que o termo "matriz" foi introduzido pelo matemático britânico James Joseph Sylvester, em 1850, em um artigo publicado no Philosophical Magazine (SYLVESTER, 1850), dedicado a um problema de natureza geométrica. Em 1858, Arthur Cayley, contemporâneo e amigo de Sylvester – publicou uma memória em que definia as operações com matrizes e enunciava as propriedades dessas operações (CAYLEY, 1858).

Definição 3.1 [Boldrini, 1988] Chamamos de matriz uma tabela de elementos dispostos em linhas e colunas.

Representa-se uma matriz de m linhas e n colunas por:

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

em que cada um dos elementos $a_{ij} \in R$.

- Uma matriz pode ser representada por colchetes ou parênteses.
- As matrizes s\(\tilde{a}\) representadas por letras mai\(\tilde{a}\)sculas e seus elementos por letras min\(\tilde{a}\)sculas, acompanhadas de dois \(\tilde{n}\)dices que indicam, respectivamente, a linha e a coluna ocupadas pelo elemento.

3.1 Matrizes no Scilab

- No Scilab, uma matriz é construída utilizando colchetes [].
- Os elementos que constituem as linhas das matrizes são separados por espaços ou por vírgulas (notação de vetor linha).
- A indicação de término de cada linha da matriz é feita com ponto e vírgula (notação de vetor coluna).

O Quadro 3.1 exibe três matrizes, as colunas do quadro exibem a matriz escrita em notação matemática; o código em Scilab e saída no Scilab.

Quadro 3.1 Exemplos de matrizes no Scilab

Matriz 2 x 3	Matriz 3 x 2	Matriz 2 x 4
$A = \begin{pmatrix} -2 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$	$B = \begin{pmatrix} -2 & 1\\ 1 & 2\\ 0 & 1 \end{pmatrix}$	$C = \begin{pmatrix} 2 & 0.5 & 1 & 5 \\ 3 & 5 & -2 & 1 \end{pmatrix}$
> A=[-2 1 0;1 2 1]	> B=[-2 1;1 2;0 1]	> C=[2 0.5 1 5;3 5 -2 1]
A =	B =	C =
-2. 1. 0. 1. 2. 1	-2. 1. 1. 2. 0. 1.	2. 0.5 1. 5. 3. 52. 1.

Fonte: Elaborado pelo autor

As funções *lenght* e *size* podem ser usadas, em Scilab, para determinar repectivamente, o número de elementos de uma matriz e a ordem de uma matriz (o número de linhas e colunas).

Exemplo 3.1

-2. 1. 0.

1. 2. 1.

--> length(A)

ans =

6.

--> size(A)

ans =

2. 3.

3.2 Matrizes Especiais

Existem algumas matrizes, seja pela quantidade de linhas ou colunas, ou ainda, pela natureza de seus elementos, têm propriedades que as diferenciam de uma matriz qualquer.

- Matriz quadrada é aquela cujo número de linhas é igual ao número de colunas (m=n).
- Matriz nula é aquela em que $a_{ij} = 0$, para todo $i \in j$.
- Matriz coluna é aquela que possui uma única coluna (n = 1). No Scilab,
 a matriz coluna coincide com o vetor coluna, ver Observação 3.1.
- Matriz linha é aquela em que m=1. No Scilab, a matriz linha coincide com o vetor linha, ver Observação 3.1.
- Matriz diagonal é uma matriz quadrada em que a_{ij} = 0, para i ≠ j, isto
 é, todos os elementos fora da diagonal principal são nulos.
- Matriz com elementos unitários é aquela em que todos os elementos são iguais a um, isto é, $a_{ij} = 1$, para todo $i \in j$.

Os Quadros 3.2 e 3.3, exibem estas matrizes criadas no Scilab.

Quadro 3.2 Exemplos de matriz quadrada, matriz nula e matriz coluna

Matriz quadrada	Matriz nula	Matriz coluna
> D=rand(3,3)	> E=zeros(2,2)	> F=[1;3;5]
D =	E =	F =
0.2113249 0.3303271 0.8497452	0. 0.	1.
0.7560439 0.6653811 0.685731	0. 0.	3.
0.0002211 0.6283918 0.8782165		5.

444441 - 414			
Matriz linha	Matriz diagonal	Matriz com uns	
> G=[2 4 6]	> D=diag([-2 1 2])	> ones(3,3)	
G =	D =	ans =	
2. 4. 6.	-2. 0. 0.	1. 1. 1.	
	0 1 0	1 1 1	

Quadro 3.3 Exemplos de matriz nula, matriz de uns e matriz identidade

Fonte: Elaborado pelo autor

Observação 3.1

- Vetores são um agrupamento de elementos em uma única fila (linha ou coluna).
- As coordenadas de um vetor são escritas entre colchetes e separados por um espaço, vírgula ou ponto e vírgula.
- Quando separados por espaço ou vírgula dão origem a um vetor linha.
- Se forem separados por ponto e vírgula, geram um vetor coluna.

Exemplo 3.2

- O vetor linha: $x = [\pi, 1, e]$ --> $x=[\%pi \ 1 \ \%e]$ $x = 3.1415927 \ 1. \ 2.7182818$
- O vetor coluna: $y = \begin{bmatrix} \pi \\ 1 \\ e \end{bmatrix}$ --> y = [%pi; 1; %e] y = 3.14159271. 2.7182818

Definição 3.2 Seja A uma matriz quadrada de ordem n. A diagonal principal de A consiste nos elementos a_{11} , a_{22} , \cdots , a_{nn} .

No Scilab, a diagonal principal pode ser extraída com o comando diag(A).

Além da diagonal principal, existe a outra diagonal, conhecida como diagonal secundária. Por exemplo, se $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, os elementos a_{11} e a_{22} formam a diagonal principal e os elementos a_{12} e a_{21} formam a diagonal secundária.

Definição 3.3 O traço da matriz A, denotado por tr(A), é a soma dos elementos diagonais, isto é,

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

O comando *trace* podemos obtém-se a soma dos elementos da diagonal principal de uma matriz.

Exemplo 3.3

```
--> ones(3,3)

ans =

1. 1. 1.

1. 1. 1.

1. 1. 1.

--> diag(ones(3,3))

ans =

1.

1.

1.

--> trace(ones(3,3))

ans =

3.
```

Dentre as matrizes quadradas especiais, destacam-se:

- Matriz identidade é aquela em que a_{ii} = 1 e a_{ij} = 0, para i ≠ j, isto é, todos os elementos fora da diagonal principal são nulos e os elementos da diagonal principal são iguais a 1.
- Matriz triangular superior é uma matriz quadrada em que $a_{ij} = 0$, para i > j, isto é, todos os elementos abaixo da diagonal principal são nulos.
- Matriz triangular inferior é uma matriz quadrada em que a_{ij} = 0, para i < j, isto é, todos os elementos acima da diagonal principal são nulos.
- Matriz simétrica é uma matriz quadrada em que $a_{ij} = a_{ji}$.

Todas essas matrizes especiais são representadas no Scilab conforme mostra o Quadro 3.4 e o Quadro 3.5.

Quadro 3.4 Matrizes no Scilab

Função	Descrição da matriz	
zeros(m,n)	Cria uma matriz nula de ordem $m \times n$	
ones(m,n)	Cria uma matriz de uns de ordem $m \times n$	
eye(n,n)	Cria uma matriz identidade de ordem n	
tril(A)	Obtém a parte triangular inferior da matriz A	
triu(A)	Obtém a parte triangular superior da matriz A	
rand(m,n)	Cria uma matriz $m \times n$ de números aleatórios entre 0 e 1	

Fonte: Elaborado pelo autor

Quadro 3.5 Exemplos de matriz identidade, matriz triangular superior e inferior

Matriz Identidade de ordem 3	Matriz triangular superior de ordem 3	Matriz triangular inferior de ordem 3
$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$
> eye(3,3)	> triu(ones(3,3))	> tril(ones(3,3))
ans =	ans =	ans =
1. 0. 0. 0. 1. 0. 0. 0. 1.	1. 1. 1. 0. 1. 1. 0. 0. 1	1. 0. 0. 1. 1. 0. 1. 1. 1.

Fonte: Elaborado pelo autor

3.3 Álgebra das Matrizes

As quatro operações são definidas no Scilab, permitindo realizar multiplicações de escalares por matrizes, somas, subtrações e produtos entre matrizes, embora que para esse último ser possível, o número de colunas da primeira matriz deve ser igual ao número de linhas da segunda.

Definição 3.4 [Adição de matrizes] Dadas duas matrizes, $A \in B$, do mesmo tipo, $m \times n$, denomina-se soma da matriz A com a matriz B, representada por A + B, a matriz C do tipo $m \times n$ na qual cada elemento é obtido adicionando-se os elementos correspondentes de $A \in B$. Se $A = (a_{ij})$ e $B = (b_{ij})$ são matrizes do tipo $m \times n$, a soma A + B é a matriz $C = (c_{ij})$ do tipo $m \times n$ tal que

$$c_{ij} = a_{ij} + b_{ij}$$
, com $1 \le i \le m$ e $1 \le j \le n$.

Definição 3.5 [Subtração de matrizes] Dadas duas matrizes, $A \in B$, do mesmo tipo, $m \times n$, denomina-se diferença entre a matriz A e a matriz B, representada por A - B, a matriz D do tipo $m \times n$ na qual cada elemento é obtido adicionando-se os elementos correspondentes de A com a matriz oposta de B. Se $A = (a_{ij})$ e $B = (b_{ij})$ são matrizes do tipo $m \times n$, a soma A - B é a matriz $D = (d_{ij})$ do tipo $m \times n$ tal que

$$d_{ij} = a_{ij} - b_{ij}$$
, com $1 \le i \le m$ e $1 \le j \le n$.

Definição 3.6 [Multiplicação por escalar] Se A é uma matriz $m \times n$, de elementos a_{ij} e α um número real, então a matriz αA é uma matriz $m \times n$ cujos elementos são αa_{ij} .

Definição 3.7 [Transposição] Dada uma matriz $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$, podemos obter uma matriz $A^T = \begin{bmatrix} b_{ji} \end{bmatrix}_{n \times m}$, cujas linhas são as colunas de A, isto é, $b_{ij} = a_{ji}$. A^T é denominada transposta de A.

Α.

Exemplo 3.4

Sejam $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{bmatrix}$ e $B = \begin{bmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix}$. Calcule:

- a) A + B
- b) A B
- c) 2A
- d) A^T

Solução algébrica:

a) Adição das matrizes:

$$A + B = \begin{bmatrix} 1 + (-2) & 2 + 0 & 3 + 1 \\ 2 + 3 & 1 + 0 & -1 + 1 \end{bmatrix}$$

$$A + B = \begin{bmatrix} -1 & 2 & 4 \\ 5 & 1 & 0 \end{bmatrix}$$

b) Subtração das matrizes

$$A - B = \begin{bmatrix} 1 - (-2) & 2 - 0 & 3 - 1 \\ 2 - 3 & 1 - 0 & -1 - 1 \end{bmatrix}$$
$$A - B = \begin{bmatrix} 1 & 2 & 2 \\ -1 & 1 & -2 \end{bmatrix}$$

c) Multiplicação por escalar

$$2A = 2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 \cdot 1 & 2 \cdot 2 & 2 \cdot 3 \\ 2 \cdot 2 & 2 \cdot 1 & 2 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 2 & -2 \end{bmatrix}$$

d) Transposição da matriz A

$$A^T = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 3 & -1 \end{bmatrix}.$$

Solução do Exemplo 3.4 via Scilab:

Quadro 3.6 Exemplo 3.4 resolvido via Scilab

Matriz A	Matriz B	Adição de Matrizes
> A=[1 2 3;2 1 -1]	> B=[-2 0 1;3 0 1]	> C=A+B
A =	B =	C =
1. 2. 3.	-2. 0. 1.	-1. 2. 4.
2. 11.	3. 0. 1.	5. 1. 0.
Subtração de Matrizes	Multiplicação por escalar	Transposição
> D=A-B	> E=2*A	> F=A'
D =	E =	F =
3. 2. 2.	2. 4. 6.	1. 2.
-1. 12	4. 22.	2. 1.
		31

Fonte: Elaborado pelo autor

Definição 3.8 [Multiplicação de matrizes] Dada uma matriz $A = (a_{ij})$ do tipo $m \times n$ e uma matriz $B = (b_{jk})$ do tipo $n \times p$, o produto da matriz A pela matriz B é a matriz $C = (c_{ik})$ do tipo $m \times p$ tal que cada um dos seus elementos seja obtido por $a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + \cdots + a_{in} \cdot b_{nk}$, ou seja, denotado por

$$c_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}.$$

Definição 3.9 [Potenciação de matrizes] A potenciação de matrizes é análoga à potenciação de números reais.

$$A^n = A \times A \times \cdots \times A$$
.

A operação de base é a multiplicação, *A* matriz deve ser uma matriz quadrada.

Exemplo 3.5 Sejam
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix} e C = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} então$$

Encontre se possível:

- a) AB
- b) AC
- c) BC

BC

Solução algébrica:

- a) não é possível efetuar esta multiplicação pois o número de colunas da matriz
 A é diferente do número de linhas da matriz B.
- b) como A é uma matriz 2×3 e C é uma matriz 3×1 , o número de colunas de A é igual ao número de linhas de C, assim, o produto AC, é uma matriz 2×1 .

$$AC = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \cdot (-1) + 2 \cdot 2 + 3 \cdot 4 \\ 2 \cdot (-1) + 1 \cdot 2 + (-1) \cdot 4 \end{bmatrix} = \begin{bmatrix} -1 + 4 + 12 \\ -2 + 2 - 4 \end{bmatrix} = \begin{bmatrix} 15 \\ -4 \end{bmatrix}$$

c) como B é uma matriz 2×3 e C é uma matriz 3×1 , o número de colunas de B é igual ao número de linhas de C, assim, o produto BC, é uma matriz 2×1 .

$$BC = \begin{bmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} = \begin{bmatrix} (-2) \cdot (-1) + 0 \cdot 2 + 1 \cdot 4 \\ 3 \cdot (-1) + 0 \cdot 2 + 1 \cdot 4 \end{bmatrix} = \begin{bmatrix} 2 + 0 + 4 \\ -3 + 0 + 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}.$$

Quadro 3.7 Exemplo 3.5 resolvido via Scilab

Matriz A	Matriz B	Matriz C
> A=[1 2 3;2 1 -1]	> B=[-2 0 1;3 0 1]	> C=[-1;2;4]
A =	B =	C =
1. 2. 3.	-2. 0. 1.	
2. 11.	3. 0. 1.	-1.
		2.
		4.
Produto de Matrizes	Produto de Matrizes	Produto de Matrizes
> D=A*B	> E=A*C	> B*C
Inconsistent row/co-	E =	ans =
lumn dimensions		6.
	15.	1.
	-4.	

Exemplo 3.6 Seja
$$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$
 Calcule, A^0, A^1, A^2, A^3, A^4 .

Solução algébrica:

$$A^{0} = I$$

$$A^{1} = A$$

$$A^{2} = A \cdot A$$

$$A^{3} = A \cdot A \cdot A$$

$$\vdots$$

$$A^{n} = A \cdot A \cdot \cdots A$$

$$A^{0} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{1} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$$

$$A^{2} = A \cdot A = \begin{bmatrix} -1 & 8 \\ -4 & 7 \end{bmatrix}$$

$$A^{3} = A^{2} \cdot A = \begin{bmatrix} -9 & 22 \\ -11 & 13 \end{bmatrix}$$

$$A^{4} = A^{3} \cdot A = \begin{bmatrix} -31 & 48 \\ -24 & 17 \end{bmatrix}$$

Quadro 3.8 Exemplo 3.6 resolvido via Scilab

Matriz A	Matriz A ⁰	Matriz A ¹
> A=[1 2;-1 3]	> A^0	> A^1
A =	ans =	ans =
1. 2.	1. 0.	1. 2.
-1. 3.	0. 1.	-1. 3.
Matriz A ²	Matriz A ³	Matriz A ⁴
> A^2	> A^3	> A^4
ans =	ans =	ans =
-1. 8.	-9. 22.	-31. 48.
-4. 7.	-11. 13.	-24. 17.

Fonte: Elaborado pelo autor

3.4 Propriedades das Operações Matriciais

Definição 3.10 Denomina-se **matriz simétrica** de uma matriz A, representa-se por -A, a matriz que somada com A resulta em uma matriz nula.

Teorema 3.1 Propriedades da Adição de Matrizes

Dadas as matrizes A, B e C de mesma ordem, temos:

a) comutativa

$$A + B = B + A$$

b) associativa

$$(A+B)+C=A+(B+C)$$

c) Existência da matriz 0 nula de mesma ordem tal que

$$A + O = A$$
.

d) Existência da matriz simétrica

$$A + (-A) = 0.$$

Demonstração:

- a) Para demonstrar a propriedade comutativa, devemos mostrar que o (i,j)-ésimo elemento de A+B é igual ao (i,j)-ésimo elemento de B+A. O (i,j)-ésimo elemento de A+B; O (i,j)-ésimo elemento de B+A é $b_{ij}+a_{ij}$. Como $a_{ij}+b_{ij}=b_{ij}+a_{ij}$ $(1 \le i \le m, \ 1 \le j \le n)$.
- b) Para demonstrar a propriedade associativa, se $A=(a_{ij})$, $B=(b_{ij})$ e $C=(c_{ij})$ Então

$$(A + B) + C = (a_{ij} + b_{ij}) + (c_{ij})$$

$$= ((a_{ij} + b_{ij}) + c_{ij})$$

$$= (a_{ij} + (b_{ij} + c_{ij}))$$

$$= (a_{ij}) + (b_{ij} + c_{ij})$$

$$= A + (B + C)$$

c) Para demonstrar a existência do elemento neutro (matriz nula), é fácil ver que

$$O = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}.$$

d) Dada uma matriz $A \in M_{m \times n}(R)$, existe uma matriz (-A), de ordem $m \times n$, tal que A + (-A) + 0 (existe a simétrica de qualquer matriz).

Exemplo 3.7 Sejam $A = \begin{bmatrix} 2 & 0 \\ 6 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$. Verificar as propriedades da adição de matrizes usando o Scilab.

Quadro 3.9 Exemplo	3.7	resolvido	via Scilab
--------------------	-----	-----------	------------

Matriz A	Matriz B	Matriz C
> A=[2 0;6 3]	> B=[0 4;1 -1]	> C=[2 0;0 -2]
A =	B =	C =
2. 0.	0. 4.	2. 0.
6. 3.	11.	02.
Matriz A+B	Matriz B+A	Matriz (A+B)+C
> A+B	> B+A	> (A+B)+C
ans =	ans =	ans =
2. 4.	2. 4.	4. 4.
7. 2	7. 2.	7. 0.
Matriz A+(B+C)	Matriz A+O	Matriz A+ (-A)
> A+(B+C)	> A+ones(2,2)	> A+(-A)
ans =	ans =	ans =
4. 4.	3. 1.	0. 0.
7. 0.	7. 4.	0. 0.

Fonte: Elaborado pelo autor

Teorema 3.2 Propriedades da multiplicação por escalar

Sendo α e β números reais e A e B matrizes de mesma ordem então

- a) $(\alpha + \beta)A = \alpha A + \beta A$
- b) $\alpha(A+B) = \alpha A + \alpha B$
- c) $\alpha(\beta A) = (\alpha \beta) A$
- d) 1A = A

$$1A = A$$

Demonstração:

- a) Se $A=\left(a_{ij}\right)$ e $\alpha,\beta\in R$. Então, como a multiplicação em R é associativa, tem-se:
- b) se $A=(a_{ij})$, $B=(b_{ij})$ e $\alpha\in R$. Então, como o conjunto R goza da propriedade distributiva, tem-se

$$(\alpha + \beta)A = ((\alpha + \beta) \cdot a_{ij})$$

$$= (\alpha \cdot a_{ij} + \beta \cdot a_{ij})$$

$$= (\alpha \cdot a_{ij}) + (\beta \cdot a_{ij})$$

$$= \alpha A + \beta A.$$

c) Se $A=\left(a_{ij}\right)$ e $\alpha,\beta\in R$. Então, como a multiplicação em R é associativa, tem-se:

$$\alpha(\beta A) = (\alpha \cdot (\beta \cdot (a_{ij})))$$

$$= (\alpha \cdot (\beta \cdot a_{ij}))$$

$$= (\alpha \cdot \beta \cdot (a_{ij}))$$

$$= (\alpha \beta) A.$$

d) Se $A=\left(a_{ij}\right)$ e $1\in R$. Como 1 é o elemento neutro da multiplicação em R, temse

$$1 \cdot A = 1 \cdot (a_{ij})$$

$$= (1 \cdot a_{ij})$$

$$= (a_{ij})$$

$$= A.$$

Exemplo 3.8 Sejam $A = \begin{bmatrix} 2 & 0 \\ 6 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$, $\alpha = 2$, $\beta = 3$. Verificar as propriedades da multiplicação por escalar usando o Scilab.

Quadro 3.10 Exemplo 3.8 resolvido via Scilab

Matriz A e α	Matriz B e β	Matriz $(\alpha + \beta)A$
> A=[2 0;6 3]	> B=[0 4;1 -1]	(2+3)*A
A =	B =	> (a+b)*A
2. 0.	0. 4.	ans =
6. 3.	11.	10. 0.
		30. 15
> a=2	> b=3	
a =	b =	
2.	3	
Matriz $\alpha A + \beta A$	Matriz $\alpha(A+B)$	Matriz $\alpha A + \alpha B$
2*A+3*B	> a*(A+B)	> a*A+a*B
> a*A+b*A	ans =	ans =
ans =	4. 8.	4. 8.
10. 0.	14. 4.	14. 4.
30. 15.		
Matriz $\alpha(\beta A)$	Matriz $(\alpha\beta)A$	Matriz 1 · A
> a*(b*A)	> (a*b)*A	> 1*A
ans =	ans =	ans =
12. 0.	12. 0.	2. 0.
36. 18.	36. 18	6. 3.

Teorema 3.3 Propriedades da transposição

Se $\alpha \in R$ e A e B são matrizes compatíveis então

- a) $(A^{T})^{T} = A$
- b) $(A + B)^T = A^T + B^T$
- c) $(AB)^T = B^T A^T$
- d) $(\alpha A)^T = \alpha A^T$

Demonstração:

a) Se $A = (a_{ij}), A^T = (a_{ii}),$ tem-se

$$(A^T)^T = (a_{ji})^T$$

$$= (a_{ij})$$

$$= A$$

O que mostra que de fato $(A^T)^T = A$, isto é, a transposta da transposta de A tem como resultado a própria matriz A.

b) Se
$$A = (a_{ij}), A^T = (a_{ji}), B = (b_{ij})$$
 e $B^T = (b_{ji})$. Então
$$(A + B)^T = ((a_{ij} + b_{ij}))^T$$

$$= ((a + b)_{ij})^T$$

$$= (a_{ji}) + (b_{ji})$$

$$= A^T + B^T.$$

Isto é, a transposta da soma das matrizes A e B é igual a soma da transposta de A com a transposta de B.

c) Se
$$A = (a_{ij}), A^T = (a_{ji}), B = (b_{jk})$$
 e $B^T = (b_{kj})$. Supondo $AB = (r_{ik})$ e $B^T A^T = (s_{kj})$, tem-se

$$r_{ik} = \sum_{j=1}^{n} a_{ij} \cdot b_{jk}$$

$$= \sum_{j=1}^{n} a_{ji} \cdot b_{kj}$$

$$= \sum_{j=1}^{n} b_{kj} \cdot a_{ji}$$

$$= s_{ki}.$$

O que mostra que de fato $(AB)^T = B^T A^T$, isto é, a transposta da multiplicação da matriz A pela Matriz B é igual ao resultado fornecido da multiplicação da transposta de B pela transposta de A.

d) Seja $A = (a_{ij}), A^T = (a_{ji})$ e $\alpha \in R$.

$$(\alpha A)^{T} = ((\alpha \cdot a_{ij}))^{T}$$

$$= (\alpha \cdot a_{ji})$$

$$= \alpha \cdot (a_{ji})$$

$$= \alpha A^{T}.$$

A transposta da multiplicação de um número real qualquer pela matriz A é igual ao produto de α pela transposta de A.

Exemplo 3.9 Sejam $A = \begin{bmatrix} 2 & 0 \\ 6 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$, $\alpha = 2$. Verificar as propriedades da matriz transposta usando o Scilab.

Quadro 3.11 Exemplo 3.9 resolvido via Scilab

Matriz A	Matriz A^T	Matriz $(A^T)^T$
> A=[2 0;6 3]	> A'	> (A')'
A =	ans =	ans =
2. 0.	2. 6.	2. 0.
6. 3.	0. 3.	6. 3.
Matriz B	Matriz B^T	Matriz $A + B$
> B=[0 4;1 -1]	> B'	> A+B
B =	ans =	ans =
0. 4.	0. 1.	2. 4.
11.	41.	7. 2.
Matriz $(A + B)^T$	Matriz $A^T + B^T$	Matriz $A \cdot B$
> (A+B)'	> A'+B'	> A*B
ans =	ans =	ans =
2. 7.	2. 7.	0. 8.
4. 2.	4. 2.	3. 21.
Matriz $(AB)^T$	Matriz $B^T A^T$	Matriz $(\alpha A)^T$ e αA^T
> (A*B)'	> B'*A'	> (a*A)'
ans =	ans =	ans =
		4. 12.
0. 3.	0. 3.	0. 6.
8. 21.	8. 21.	> a*A'
		ans =
		4. 12.
		0. 6.

Teorema 3.4 Propriedades da multiplicação matricial

Se A, B e C são matrizes compatíveis então

- a) A(BC) = (AB)C
- b) A(B+C) = AB + AC
- c) (A + B)C = AC + BC

Demonstração:

a) sejam $A = \left(a_{ij}\right)_{m \times n} B = \left(b_{jk}\right)_{n \times p} e C = (c_{kr})_{p \times q}$, respectivamente,

$$(A(BC))_{ir} = \sum_{j=1}^{n} a_{ij} (BC)_{jr}$$

$$= \sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{p} b_{jk} c_{kr} \right)$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{p} a_{ij} (b_{jk} c_{kr})$$

$$= \sum_{j=1}^{n} \sum_{k=1}^{p} (a_{ij} b_{jk}) c_{kr}$$

$$= \sum_{k=1}^{p} (AB)_{ik} \cdot c_{kr}$$

$$= ((AB)C)_{ir}.$$

b) Sejam $A=\left(a_{ij}\right)_{m\times n}$ $B=\left(b_{jr}\right)_{n\times p}$ e $C=\left(c_{jr}\right)_{n\times p}$, respectivamente, usando a notação de somatório

$$(A(B+C))_{ir} = \sum_{j=1}^{n} a_{ij}(B+C)_{jr}$$

$$= \sum_{j=1}^{n} a_{ij}(b_{jr} + c_{jr})$$

$$= \sum_{j=1}^{n} (a_{ij}b_{jr} + a_{ij}c_{jr})$$

$$= \sum_{j=1}^{n} a_{ij}b_{jr} + \sum_{j=1}^{n} a_{ij}b_{jr}$$

$$= (AB)_{ir} + (AC)_{ir}$$

$$= (AB + BC)_{ir}.$$

c) Sejam $A=\left(a_{ij}\right)_{m\times n}$ $B=\left(b_{ij}\right)_{m\times n}$ e $C=\left(c_{jr}\right)_{n\times p}$, respectivamente, usando a notação de somatório

$$((A+B)C)_{ir} = \sum_{j=1}^{n} (A+B)_{ij} \cdot c_{jr}$$

$$= \sum_{j=1}^{n} (a_{ij} + b_{ij}) \cdot c_{jr}$$

$$= \sum_{j=1}^{n} (a_{ij}c_{jr} + b_{ij}c_{jr})$$

$$= \sum_{j=1}^{n} a_{ij}c_{jr} + \sum_{j=1}^{n} b_{ij}c_{jr}$$

$$= (AC)_{ir} + (BC)_{ir}$$

$$= (AC+BC)_{ir}.$$

Exemplo 3.10 Sejam $A = \begin{bmatrix} 2 & 0 \\ 6 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$. Verificar as propriedades da multiplicação de matrizes usando o Scilab.

Quadro 3.12 Exemplo 3.10 resolvido via Scilab

Matriz A	Matriz B	Matriz C
> A=[2 0;6 3]	> B=[0 4;1 -1]	> C=[2 0;0 -2]
A =	B =	C =
2. 0.	0. 4.	2. 0.
6. 3.	11.	02.
Matriz $B + C$	Matriz $A(B+C)$	Matriz AB
> B+C	> A*(B+C)	> A*B

ans =	ans =	ans =
2. 4.	4. 8.	0. 8.
13.	15. 15.	3. 21
Matriz AC	Matriz $AB + AC$	Matriz $A + B$
> A*C	> (A*B)+(A*C)	> A+B
ans =	ans =	ans =
4. 0.	4. 8.	2. 4.
126.	15. 15.	7. 2.
Matriz $(A + B)C$	Matriz BC	Matriz AC + BC
> (A+B)*C	> B*C	> (A*C)+(B*C)
ans =	ans =	ans =
48.	08.	48.
144.	2. 2	144.

Fonte: Elaborado pelo autor

Observação 3.2 Em geral na multiplicação de matrizes não vale a propriedade comutativa, isto \acute{e} , $AB \neq BA$.

Exemplo 3.11 Sejam $A = \begin{bmatrix} 2 & 0 \\ 6 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 4 \\ 1 & -1 \end{bmatrix}$. Verificar que o produto de matrizes não é comutativo usando o Scilab.

Quadro 3.13 Exemplo 3.11 resolvido via Scilab

,	
Matriz AB	Matriz BA
> A*B	> B*A
ans =	ans =
0. 8.	24. 12.
3. 21	-43.

Fonte: Elaborado pelo autor

Em alguns problemas contextualizados, necessita-se somar linhas ou colunas de uma determinada matriz. No Scilab isto pode ser feito com o comando *sum*. A soma dos elementos pode ser: elementos das linhas; elementos das colunas e da diagonal. O Quadro 3.14 mostra o comando a ser usado para fazer essa soma.

.Quadro 3.14 Comandos do Scilab para adicionar elementos da matriz A

Soma dos elementos	Soma dos elementos das linhas	Soma dos elementos	
das colunas		da diagonal	
> sum(A,'c')	> sum(A,'r')	> D=diag(A);	
		> sum(D,'r')	

Exemplo 3.12 Seja $A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix}$, calcule a soma dos elementos da matriz.

Quadro 3.15 Exemplo 3.12 resolvido via Scilab

Matriz A	Soma dos elementos das	Soma dos elementos das
	colunas da matriz A	linhas
> A=[0 1 2;3 2 -1;0 1 0]	> sum(A,'c')	> sum(A,'r')
A =	ans =	ans =
0. 1. 2.	3.	
3. 21.	4.	3. 4. 1.
0. 1. 0	1.	
Matriz diagonal de A	Soma dos elementos da	
	Diagonal da matriz A	
> D=diag(A)	> sum(D,'r')	
	ans =	
	2.	

4. DETERMINANTES

Geralmente, nos livros de matemática do Ensino médio, o determinante de uma matriz é definido como um número real associado a uma matriz quadrada, e são definidos por regras os determinantes de matrizes quadrada de ordens 1,2 e 3. Dada A uma matriz quadrada de ordem n, diz-se que o determinante da matriz da matriz A é um número associado a essa matriz conforme determinas leis.

Representa-se o determinante de uma matriz quadrada A por det(A) ou com os elementos entre duas barras.

Exemplo 4.1 Se $A = \begin{pmatrix} 2 & 7 \\ -1 & 5 \end{pmatrix}$, então o determinante da matriz A é representado por $\det(A) = \begin{bmatrix} 2 & 7 \\ -1 & 5 \end{bmatrix}$.

O determinante de uma matriz quadrada de ordem 1 é o próprio elemento, isto é,

$$\det(A) = |a_{11}| = a_{11}.$$

O determinante de uma matriz quadrada de ordem 2 é igual à diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária, isto é,

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{22}.$$

O determinante de uma matriz quadrada de ordem 3, conhecida como Regra de Sarrus, se resume no seguinte esquema

- 1. Repetem-se as duas primeiras colunas à direita do determinante;
- 2. Multiplica-se os elementos da diagonal principal e os elementos de cada paralela a essa diagonal, conservando o sinal de cada produto obtido;
- Multiplica-se os elementos da diagonal secundária e os elementos de cada paralela a essa diagonal, invertendo o sinal de cada produto obtido;
- 4. Adicionam-se os resultados obtidos no passo 2 e no passo 3.

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

$$- & - & + & + & +$$

$$= a_{11} \cdot a_{22} \cdot a_{33} + a_{12} \cdot a_{23} \cdot a_{31} + a_{13} \cdot a_{21} \cdot a_{32} +$$

$$- (a_{31} \cdot a_{22} \cdot a_{13} + a_{32} \cdot a_{23} \cdot a_{11} + a_{23} \cdot a_{21} \cdot a_{12}).$$

No livro de Paiva (PAIVA, 1999, p. 241), o autor conceitua determinante de ordem n utilizando cofatores.

Definição 4.1 Seja $A = (a_{ij})$ uma matriz quadrada de ordem n, chama-se cofator do elemento a_{ij} o número que é indicado por A_{ij} (lê-se "cofator do elemento a_{ij} "), definido por:

$$A_{ij} = (-1)^{i+j} \det(\bar{A}_{ij})$$

em que \bar{A}_{ij} é a matriz que se obtém eliminando-se a linha i e a coluna j da matriz A.

Teorema 4.1 [Teorema de Laplace] Seja $A = (a_{ij})$ uma matriz quadrada de ordem n. O determinante de A, denotado por det(A), é definido por

$$\begin{array}{rcl} \det{(A)} & = & a_{11}\bar{A}_{11} + a_{12}\bar{A}_{12} + \cdots + a_{1n}\bar{A}_{1n} \\ & = & \sum_{j=1}^n a_{1j}\bar{A}_{1j} \,, \end{array}$$

em que $\bar{A}_{ij} = (-1)^{1+j} \det(\bar{A}_{1j})$ é o cofator do elemento a_{1j} .

A expressão do Teorema 4.1 é chamada de desenvolvimento em cofatores do determinante da matriz *A* em termos da 1^a linha. O determinante pode ser calculado fazendo o desenvolvimento em cofatores de qualquer linha ou coluna.

Observação 4.1 Seja A uma matriz guadrada de ordem n então

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$
 (4.1)

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$
 (4.2)

A Equação (4.1) representa o determinante da matriz A pela a expansão do Teorema de Laplace pela i-ésima linha e a Equação (4.2) representa o determinante da matriz A pela a expansão do Teorema de Laplace pela j-ésima coluna.

Exemplo 4.2 Calcule o determinante da matriz

$$A = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 1 & -2 & 2 & 3 \\ 3 & 1 & 4 & 2 \\ 5 & -1 & 0 & -1 \end{pmatrix}$$

Solução: O cálculo do determinante da matriz é feito usando o teorema de Laplace, como $a_{11} = a_{12} = a_{13} = 0$, escolhe-se a primeira linha:

$$\det(A) = 2 \cdot (-1)^{1+4} \cdot \det(\bar{A}_{14}),$$

em que

$$\bar{A}_{14} = \begin{pmatrix} 1 & -2 & 2 \\ 3 & 1 & 4 \\ 5 & -1 & 0 \end{pmatrix},$$

O determinante da matriz \bar{A}_{14} pode ser calculado usando cofatores (teorema de Laplace) ou usando a Regra de Sarrus. Aplicando a Regra de Sarrus, obtém-se

$$\begin{vmatrix} 1 & -2 & 2 & 1 & -2 \\ 3 & 1 & 4 & 3 & 1 \\ 5 & -1 & 0 & 5 & -1 \end{vmatrix} = 0 + (-6) - 40 - 10 + 4 = -52.$$

Portanto
$$\det(A) = 2 \cdot (-1)^{1+4} \cdot \det(\bar{A}_{14}) = (-2) \cdot (-52) = 104.$$

O determinante de uma matriz pode ser calculado diretamente no Scilab utilizando o comando det. Podemos também aplicar o teorema de Laplace pelo desenvolvimento dos cofatores. Para acessar o elemento da i-ésima linha e da j-ésima coluna de uma matriz A, acessa-se usando a sintaxe A(i, j).

O Quadro 4.1 mostra a solução do Exemplo 4.2

Quadro 4.1 Exemplo 4.2 no Scilab

Quadro 4.1 Exemplo 4.2 no Schab		
Matriz A	det (<i>A</i>)	Teorema de Laplace
> A=[0 0 0 2;1 -2 2	> det(A)	> B=2*(-
3;3 1 4 2;5 -1 0 -1]	ans =	1)^5*det(A(2:4,1:3))
A =		B =
	104.	
0. 0. 0. 2.		104.
12. 2. 3.		
3. 1. 4. 2.		
51. 01.		

Fonte: Elaborado pelo autor

Observação 4.2

 As computações da função det no Scilab são baseadas nas rotinas do LA-PACK DGETRF para matrizes reais e LAPACK ZGETRF para o caso de matrizes complexas. O pacote DGETRF faz a fatoração LU de uma matriz A, isto é, fatora a matriz
 A como o produto de uma matriz L triangular inferior e uma matriz U triangular,
 ou seja, A = LU.

Definição 4.2 [Matriz inversível] Seja $A = (a_{ij})$ uma matriz quadrada de ordem n é inversível se, e somente se, existir uma matriz B tal que:

$$AB = BA = I_n$$
.

As matrizes A e B são chamadas de inversas entre si, e tal fato é indicado por $B = A^{-1}$ (lê-se "B é igual à inversa de A").

Teorema 4.2 Propriedades da inversa

a) Se A é uma matriz inversível então A^{-1} é inversível e

$$(A^{-1})^{-1} = A$$
.

b) Se A e B são matrizes inversíveis então AB é inversível e

$$(AB)^{-1} = B^{-1}A^{-1}$$

c) Se A é uma matriz inversível então A^T é inversível e

$$(A^T)^{-1} = (A^{-1})^T$$
.

Demonstração:

a) A^{-1} é inversível se pudermos achar uma matriz B tal que

$$A^{-1}B = BA^{-1} = I_n$$
.

Porém,

$$A^{-1}A = AA^{-1} = I_n.$$

Assim, B = A é a inversa de A^{-1} , e portanto

$$(A^{-1})^{-1} = A$$
.

b) Tem-se

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AI_nA^{-1} = AA^{-1} = I_n$$

е

$$(B^{-1}A^{-1}) = (AB) = B^{-1}(A^{-1}A)B = B^{-1}I_nB = B^{-1}B = I_n.$$

Portanto, AB é inversível. Como a inversa de uma matriz é única, conclui-se que

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

c) Tem-se

$$AA^{-1} = A^{-1}A = I_n$$

Tomando a transposta, obtém-se

$$(AA^{-1})^T = (A^{-1}A)^T = I_n.$$

Então

$$(A^{-1})^T A^T = A^T (A^{-1})^T = I_n.$$

Isto prova que

$$(A^T)^{-1} = (A^{-1})^T.$$

Exemplo 4.3

Sejam $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$. Verificar as propriedades da inversa de

matrizes usando o Scilab.

Quadro 4.2 Exemplo 4.3 resolvido via Scilab

	Exemplo 4.3 resolvido via	
Matriz A	Matriz A ⁻¹	Matriz $(A^{-1})^{-1}$
> A=[2 1 3;3 2 -1;2 1 1]	> inv(A)	> inv(inv(A))
A =	ans =	ans =
2. 1. 3.	-1.5 -1. 3.5	2. 1. 3.
3. 21.	2.5 25.5	3. 21.
2. 1. 1.	0.5 00.5	2. 1. 1.
Matriz B	Matriz B^{-1}	Matriz AB
> B=[2 1 3;0 1 2;1 0 3]	> inv(B)	> A*B
B =	ans =	ans =
2. 1. 3.	0.6 -0.6 -0.2	7. 3. 17.
0. 1. 2.	0.4 0.6 -0.8	5. 5. 10.
1. 0. 3.	-0.2 0.2 0.4	5. 3. 11.
1. 0. 3.	-0.2 0.2 0.4	3. 3. 11.
Matriz $(AB)^{-1}$	Matriz $B^{-1} \cdot A^{-1}$	Matriz A^T
(112)	Width D II	
> inv(A*B)	> inv(B)*inv(A)	> A'
> inv(A*B)	> inv(B)*inv(A)	> A' ans =
> inv(A*B) ans = -2.5 -1.8 5.5	> inv(B)*inv(A) ans = -2.5 -1.8 5.5	> A' ans = 2. 3. 2.
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5	> A' ans = 2. 3. 2. 1. 2. 1.
> inv(A*B) ans = -2.5 -1.8 5.5	> inv(B)*inv(A) ans = -2.5 -1.8 5.5	> A' ans = 2. 3. 2.
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2.	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2.	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1.
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^T)^{-1}$	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^{-1})^T$	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1. Matriz $A * A^{-1}$
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz (A ^T) ⁻¹ > inv(A')	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz (A ⁻¹) ^T > (inv(A))'	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1. Matriz $A * A^{-1}$ > A*inv(A)
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^T)^{-1}$	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^{-1})^T$	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1. Matriz $A * A^{-1}$
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^T)^{-1}$ > inv(A') ans =	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz (A ⁻¹) ^T > (inv(A))' ans =	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1. Matriz $A * A^{-1}$ > A*inv(A) ans =
> inv(A*B) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz (A ^T) ⁻¹ > inv(A')	> inv(B)*inv(A) ans = -2.5 -1.8 5.5 0.5 0.8 -1.5 1. 0.6 -2. Matriz $(A^{-1})^{T}$ > (inv(A))' ans = -1.5 2.5 0.5	> A' ans = 2. 3. 2. 1. 2. 1. 31. 1. Matriz $A * A^{-1}$ > A*inv(A)

Fonte: Elaborado pelo autor

Observação 4.3

Pelo Teorema 4.2, $(A^T)^{-1} = (A^{-1})^T$, porém o Quadro 4.2 exibe as matrizes calculadas no Scilab, tem-se as seguintes matrizes:

$$(A^{T})^{-1} = \begin{pmatrix} -1.5 & 2.5 & 0.5 \\ -1 & 2 & -246D - 32 \\ 3.5 & -5.5 & -0.5 \end{pmatrix}; \quad (A^{-1})^{T} = \begin{pmatrix} -1.5 & 2.5 & 0.5 \\ -1 & 2 & \mathbf{0} \\ 3.5 & -5.5 & -0.5 \end{pmatrix}$$

O elemento da matriz $(A^T)^{-1}$ que está na segunda e terceira coluna vale -246D-32 e o elemento da matriz $(A^{-1})^T$ nessa mesma posição vale 0. Isso se deve ao fato da precisão de máquina, (%eps é o maior número para o qual 1+ %eps = 1), isto é, 2.220D-16, significa o menor número tal que, quando adicionado a 1, cria um número maior que 1 no computador, ou seja, a menor diferença entre dois números. Assim, esse valor representa o grau de precisão dos números obtidos pelo computador, mostrando o número de casas decimais máximo (no caso 15) que é possível obter nos cálculos.

Observação 4.4

- As computações da função inv no Scilab são baseadas nas rotinas do LAPACK DGETRF, DGETRI para matrizes reais e LAPACK ZGETRF, ZGETRI para o caso de matrizes complexas.
- O pacote DGETRI calcula a inversa de uma matriz usando a fatoração LU calculada pelo pacote DGETRF.

Teorema 4.3 Sejam A e B matrizes quadrada de ordem n.

a) O determinante do produto de A por B é igual ao produto dos seus determinantes,

$$\det(AB) = \det(A) \det(B).$$

b) Os determinantes de A e de sua transposta A^T são iguais,

$$\det(A) = \det(A^T)$$
.

- c) Se A é uma matriz triangular então $\det(A) = a_{11}a_{22} \cdots a_{nn}$.
- d) Se A é inversível então $det(A) \neq 0$.
- e) Se a matriz A tem uma linha ou coluna nula então det(A) = 0.

Demonstração:

a) A demonstração pode ser encontrada no livro de Álgebra Linear da Coleção Schaum de Lipschutz (LIPSCHUTZ, 2011, p.292).

- b) O cálculo do determinante da matriz A usando a expansão de cofatores pela 1^a linha é igual ao determinante da matriz A^T usando a expansão pela 1^a coluna.
- c) Seja A uma matriz triangular superior

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}.$$

Utiliza-se a coluna 1 para aplicar o Teorema de Laplace, tem-se:

$$\det(A) = a_{11} \cdot \begin{vmatrix} a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}$$

Usando novamente o Teorema de Laplace na coluna 1 da submatriz \bar{A}_{11} :

$$\det(A) = a_{11} \cdot a_{22} \cdot \begin{vmatrix} a_{33} & a_{34} & \cdots & a_{3n} \\ 0 & a_{44} & \cdots & a_{4n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}.$$

Continuando o mesmo raciocínio

$$\det(A) = a_{11} \cdot a_{22} \cdots a_{n-2} \begin{vmatrix} a_{n-1,n-1} & a_{n-1,n} \\ 0 & a_{nn} \end{vmatrix}.$$

Logo,

$$\det(A) = a_{11} \cdot a_{22} \cdots a_{n-2 \, n-2} \cdot a_{n-1,n-1} \cdot a_{nn}.$$

d) Se A é inversível então $AA^{-1} = I$, como I é uma matriz diagonal, e, portanto, é uma matriz triangular, tem-se, det(I) = 1. Utilizando o produto dos determinantes tem-se:

$$\det(AA^{-1}) = 1 \implies \det(A)\det(A^{-1}) = 1 \implies \det(A) \neq 0.$$

Além disso,

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

e) Como cada produto elementar com sinal de A tem um elemento de cada linha e um elemento de cada coluna, é claro que todo produto elementar tem pelo menos um fator nulo, vindo da linha (ou coluna) nula. Neste caso, todo produto elementar com sinal de A é nulo e, portanto, como o determinante é a soma dos produtos elementares com sinal, então $\det(A) = 0$.

Exemplo 4.4

Sejam
$$A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & 0 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 4 & 2 \\ 0 & 0 & -2 \end{bmatrix}$, $D = \begin{bmatrix} 3 & 0 & 2 \\ -1 & 0 & 1 \\ 1 & 0 & 3 \end{bmatrix}$.

Verificar as propriedades de determinantes de matrizes usando o Scilab.

Quadro 4.3 Exemplo 4.4 resolvido via Scilab

Quadro 4.3	Exemplo 4.4 resolvido via	Scilab
Matriz A	Matriz B	Matriz AB
> A=[2 1 3;3 2 -1;2 1 1]	> B=[2 1 3;0 1 2;1 0 3]	> A*B
A =	B =	ans =
2. 1. 3.	2. 1. 3.	7. 3. 17.
3. 21.	0. 1. 2.	5. 5. 10.
2. 1. 1.	1. 0. 3.	5. 3. 11.
2. 1. 1.	1. 0. 3.	J. J. 11.
Matriz C	Matriz A ^T	Matriz A ⁻¹
> C=[1 3 2;0 4 2;0 0 -2]	> A'	> inv(A)
C =	ans =	ans =
1. 3. 2.	2. 3. 2.	-1.5 -1. 3.5
0. 4. 2.	1. 2. 1.	2.5 25.5
0. 02	31. 1.	0.5 00.5
det (A)	det (B)	det(AB)
> det(A)	> det(B)	> det(A*B)
ans =	ans =	ans =
-2.0000000	5.	-10.000000
$\det(A^T)$	det(<i>C</i>)	$\det(A^{-1})$
> det(A')	> det(C)	> det(inv(A))
ans =	ans =	ans =
-2.0000000	-8.	-0.5
Matriz D	det (D)	$\det(D')$
> D=[3 0 2;-1 0 1;1 0 3]	> det(D)	> det(D')
D =	ans =	ans =
3. 0. 2.	0.	0.
-1. 0. 1.		
1. 0. 3.		

Fonte: Elaborado pelo autor

A matriz C é uma matriz triangular superior portanto o det(C) é o produto dos elementos da diagonal principal que vale -8. A matriz D possui uma coluna nula portanto det(D) = 0. A matriz D^T possui uma linha nula portanto $det(D^T) = 0$.

Teorema 4.4 Se B é a matriz quadrada de ordem n obtida quando uma única linha (ou coluna) da matriz A é multiplicada por um escalar k não nulo, então $det(B) = k \cdot det(A)$.

Demonstração: Suponha que a matriz B é obtida da matriz A multiplicando as entradas da i-ésima linha da matriz A por k. Para calcular o determinante da matriz B, usase a Equação (4.1),

$$\det(B) = \sum_{j=1}^{n} (-1)^{i+j} \cdot k \cdot a_{ij} \cdot \det(B_{ij})$$

$$= (-1)^{i+1} \cdot k \cdot a_{i1} \cdot \det(B_{i1}) + (-1)^{i+2} \cdot k \cdot a_{i2} \cdot \det(B_{i2}) + \dots + (-1)^{i+n} \cdot k \cdot a_{ik} \cdot \det(B_{in})$$

$$= (-1)^{i+1} \cdot k \cdot a_{i1} \cdot \det(A_{i1}) + (-1)^{i+2} \cdot k \cdot a_{i2} \cdot \det(A_{i2}) + \dots + (-1)^{i+n} \cdot k \cdot a_{ik} \cdot \det(A_{in})$$

$$= k \cdot \left((-1)^{i+1} \cdot a_{i1} \cdot \det(A_{i1}) + (-1)^{i+2} \cdot a_{i2} \cdot \det(A_{i2}) + \dots + (-1)^{i+n} \cdot a_{ik} \cdot \det(A_{in}) \right)$$

$$= k \cdot \sum_{j=1}^{n} (-1)^{i+j} \cdot a_{ij} \det(A_{ij})$$

$$= k \cdot \det(A).$$

Corolário 4.1 Seja Se A é a matriz quadrada de ordem n e k um escalar não-nulo então $\det(kA) = k^n \det(A)$.

Demonstração: Quando multiplicamos a matriz A por k, todos os elementos de A são multiplicados por k. Assim, ao multiplicarmos uma linha (ou coluna) o determinante de A fica multiplicado por k; ao multiplicarmos duas linhas, ele fica multiplicado por k^2 ; ao multiplicarmos as n linhas, o determinante fica multiplicado por k^n .

Exemplo 4.5

Verificar a validade do teorema 4.4 e Corolário 4.1 para as matrizes:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 2 & 2 \\ 4 & 6 & 8 \\ 10 & 16 & 18 \end{bmatrix}.$$

Solução: Observe que a matriz B é obtida multiplicando-se a 1ª linha da matriz A por 2. A matriz C = 2A. Calculemos os determinantes das matrizes $A, B \in C$, usando a regra de Sarrus.

$$\det A = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{vmatrix}$$

$$= 27 + 16 + 20 - 15 - 18 - 32$$

$$= -2$$

$$\det B = \begin{vmatrix} 2 & 2 & 2 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{vmatrix}$$

$$= 54 + 32 + 40 - 30 - 36 - 64$$

$$= -4.$$

$$\det C = \begin{vmatrix} 2 & 2 & 2 \\ 4 & 6 & 8 \\ 10 & 16 & 18 \end{vmatrix}$$

$$= 216 + 128 + 160 - 120 - 144 - 256$$

$$= -16.$$

Pelo Teorema 4.4:

$$\det B = 2 \cdot \det A = 2 \cdot (-2) = -4.$$

Pelo Corolário 4.1:

$$\det C = 2^3 \cdot \det A = 8 \cdot (-2) = -16.$$

Verifiquemos no Scilab.

Quadro 4.4 Exemplo 4.5 resolvido via Scilab

Matriz A	Matriz B	Matriz C
> A=[1 1 1;2 3 4;5 8 9]	> B=[2 2 2;2 3 4;5 8 9]	> C=2*A
A =	B =	C =
1. 1. 1.	2. 2. 2.	2. 2. 2.
2. 3. 4.	2. 3. 4.	4. 6. 8.
5. 8. 9.	5. 8. 9.	10. 16. 18.
det A	det B	det C
> det(A)	> det(B)	> det(C)
ans =	ans =	ans =
-2.0000000	-4.000000	-16.000000

Fonte: Elaborado pelo autor

Observação 4.5 Em geral, $det(A + B) \neq det A + det B$.

Quadro 4.5 Exemplo da Observação 4.5.

Matriz A	Matriz B	Matriz A+B
> A=[1 1 1;2 3 4;5 8 9]	> B=[2 2 2;2 3 4;5 8 9]	> D=A+B
A =	B =	D =
1. 1. 1.	2. 2. 2.	3. 3. 3.
2. 3. 4.	2. 3. 4.	4. 6. 8.
5. 8. 9.	5. 8. 9.	10. 16. 18.
det A	det B	det C
> det(A)	> det(B)	> det(D)
ans =	ans =	ans =
-2.0000000	-4.000000	-24.000000

Fonte: Elaborado pelo autor

5 SISTEMAS LINEARES

Definição 5.1 Uma equação linear nas incógnitas x_1, x_2, \dots, x_n é uma equação que pode ser escrita na forma geral

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

em que

- x_1, x_2, \dots, x_n são incógnitas;
- a_1, a_2, \cdots, a_n são números reais chamados coeficientes das incógnitas
- *b* é o termo independente.

Exemplo 5.1

- 2x + 5y = 7 é uma equação linear nas variáveis x e y;
- x + 2y 7z = 10 é uma equação linear nas variáveis $x, y \in z$.

Definição 5.2 Dada a equação linear

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b.$$

Diz-se que a n-upla ordenada de números reais (k_1, k_2, \dots, k_n) é solução da equação se, e somente se,

$$a_1k_1 + a_2k_2 + \dots + a_nk_n = b.$$

Exemplo 5.2 Considere a equação

$$3x + 2y = 18$$

- o par ordenado (4,3) é uma solução pois $3 \cdot 4 + 2 \cdot 3 = 18$;
- o par ordenado (6,0) é uma solução pois $3 \cdot 6 + 2 \cdot 0 = 18$;
- o par ordenado (5,1) é uma solução pois $3 \cdot 5 + 2 \cdot 1 \neq 18$.

Definição 5.3 Quando o termo independente b for igual a zero, a equação linear denomina-se equação linear homogênea. Uma solução trivial ou nula de uma equação linear homogênea é a n-upla $(0,0,0,\cdots,0)$.

Definição 5.4 [sistema linear] um sistema de equações lineares com m equações e n incógnitas é um conjunto de equações do tipo:

$$(*) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n & = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n & = b_2 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n & = b_m \end{cases}$$

com a_{ij} , $1 \le i \le m$, $1 \le j \le n$, números reais.

Definição 5.5 Uma solução do sistema linear (*) é uma n-upla de números reais (x_1, x_2, \dots, x_n) que satisfaça simultaneamente estas m equações.

Definição 5.6 Denomina-se sistema linear homogêneo aquele em que todas as equações lineares são homogêneas.

5.1 Classificação de um sistema linear

De acordo com o número de soluções que um sistema linear possui, ele pode ser classificado em:

- Possível e determinado, quando possui uma única solução;
- Possível e indeterminado, quando possui infinitas soluções;
- Impossível, quando não possui solução.

Um sistema linear homogêneo é classificado de acordo com o número de soluções que ele tem, pode ser:

- possível e determinado (sistema apresenta solução única).
- possível e indeterminado (sistema apresenta várias soluções).

5.2 Sistemas lineares e matrizes

O sistema linear (*) pode ser escrito na forma matricial:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

ou $A \cdot X = B$ em que

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

é a matriz dos coeficientes,

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

é a matriz das incógnitas e

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

é a matriz dos termos independentes. A matriz

$$E = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{pmatrix}$$

obtida juntando A e B é chamada de matriz aumentada do sistema linear.

No caso de sistema linear homogêneo pode ser escrito na forma matricial:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

ou $A \cdot X = 0$ em que

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

é a matriz dos coeficientes,

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

é a matriz das incógnitas e

$$O = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

é a matriz dos termos independentes.

A solução

$$x_1 = x_2 = \cdots x_n = 0$$

De um sistema linear homogêneo é chamada de solução trivial. Uma solução x_1, x_2, \cdots, x_n de um sistema homogêneo em que nem todos os x_i são nulos é chamada uma solução não-trivial.

Existem diferentes formas para resolver um sistema linear, entre elas: eliminação Gaussiana (escalonamento), inversão de matriz, e regra de Cramer.

Teorema 5.1 Se o sistema linear é de ordem n e a matriz dos coeficientes é inversível. Então esse sistema é possível e determinado e sua solução é $X = A^{-1}B$.

Demonstração: Seja AX = B um sistema linear em que A é a matriz dos coeficientes, X é matriz das incógnitas e B é a matriz dos termos independentes. Como A é inversível, tem-se

$$AX = B \iff A^{-1}(AX) = A^{-1}B \iff (A^{-1}A)X = A^{-1}B \Leftrightarrow X = A^{-1}B.$$

Pela unicidade da matriz inversa, a única solução do sistema é dada por

$$X = A^{-1}B.$$

5.3 Uso do Scilab na resolução de sistemas lineares

Há algumas maneiras de resolver sistemas lineares usando o Scilab. Considere o sistema linear AX = B e E a matriz aumentada. Para resolver um sistema linear via Scilab, tem-se algumas maneiras:

1. Usando o comando inv(A)

$$-->X=inv(A)*B$$

- 2. Usando o comando *linsolve*;
- 3. Usando o operador \ (divisão à esquerda)

$$-->A \setminus b$$

4. Usando o comando rref, utiliza a matriz aumentada do sistema

Para exemplificar a resolução de um sistema linear utilizando essas maneiras, considere o Exemplo 5.3.

Exemplo 5.3 Encontre a solução do sistema linear abaixo:

$$\begin{cases} x_1 + 4x_2 + 3x_3 &= 1 \\ 2x_1 + 5x_2 + 4x_3 &= 4 \\ x_1 - 3x_2 - 2x_3 &= 5 \end{cases}$$

Solução: Tem-se a forma matricial do sistema:

$$\begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$$

sendo

$$A = \begin{pmatrix} 1 & 4 & 3 \\ 2 & 5 & 4 \\ 1 & -3 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}, E = \begin{pmatrix} 1 & 4 & 3 & 1 \\ 2 & 5 & 4 & 4 \\ 1 & -3 & -2 & 5 \end{pmatrix}.$$

Como det(A) = 1, a matriz A é inversível. Portanto $X = A^{-1}B$.

Assim sendo, para utilizar o comando *inv* no Scilab, usa-se o seguinte algoritmo:

- 1º passo: Entrar com a matriz $A = [1 \ 4 \ 3; 2 \ 5 \ 4; 1 \ -3 \ -2];$
- 2° passo: Entrar com a matriz B = [1; 4; 5];
- 3° passo: Obter a matriz X utilizando o comando X = inv(A) * B.

Quadro 5.1 Exemplo 5.3 no Scilab utilizando o comando inv

Matriz A	det (A)	Matriz B
> A=[1 4 3;2 5 4;1 -3 -2]	> det(A)	> B=[1;4;5]
A =	ans =	B =
1. 4. 3.	1.0000000	1.
2. 5. 4.		4.
132.		5.
Matriz A^{-1}	$X = A^{-1}B$	Solução única do sistema
> inv(A)	> X=inv(A)*B	
ans =	X =	x = 3
		y = -2
21. 1.	3.	z = 2
85. 2.	-2.0000000	
-11. 73.	2.0000000	

Fonte: Elaborado pelo autor

Ainda é possível resolver o Exemplo 5.3 usando o comando *linsolve*. Sabe-se que o sistema linear é escrito na forma matricial AX = B, subtraindo a matriz B em ambos os lados da equação, tem -se:

$$AX - B = 0$$

O comando linsolve resolve a equação

$$Ax + b = 0$$

Como queremos resolver Ax = b utiliza-se junto com o comando a notação (A, -b).

Assim sendo, para utilizar o comando *linsolve* no Scilab, usa-se o seguinte algoritmo:

- 1º passo: Entrar com a matriz $A = [1 \ 4 \ 3; 2 \ 5 \ 4; 1 \ -3 \ -2];$
- 2° passo: Entrar com a matriz B = [1; 4; 5];
- 3º passo: Obter a matriz X utilizando o comando X = linsolve(A, -B).

Quadro 5.2 Exemplo 5.3 no Scilab utilizando o comando linsolve

Matriz A	Matriz B	Solução via Scilab
> A=[1 4 3;2 5 4;1 -3 -2]	> B=[1;4;5]	> X=linsolve(A,-B)
A =	B =	X =
1. 4. 3.	1.	3.000000
2. 5. 4.	4.	-2.0000000
132.	5.	2.0000000

Fonte: Elaborado pelo autor

Outra maneira para resolver o Exemplo 5.3 usando o operador \ (divisão à esquerda). Assim sendo para utilizar esse operador no Scilab, usa-se o seguinte algoritmo:

- 1º passo: Entrar com a matriz $A = [1 \ 4 \ 3; 2 \ 5 \ 4; 1 \ -3 \ -2];$
- 2° passo: Entrar com a matriz B = [1; 4; 5];
- 3º passo: Obter a matriz X usando o operador divisão á esquerda $X = A \setminus B$.

Quadro 5.3 Exemplo 5.3 no Scilab utilizando o operador divisão

Matriz A	Matriz B	Solução via Scilab
> A=[1 4 3;2 5 4;1 -3 -2]	> B=[1;4;5]	> X=A\ <i>B</i>
A =	B =	X =
1. 4. 3.	1.	3.0000000
2. 5. 4.	4.	-2.0000000
132.	5.	2.0000000

Fonte: Elaborado pelo autor

Na quarta sugestão, o Exemplo 5.3 é resolvido utilizando a matriz aumentada junto com o comando *rref* do Scilab, usa-se o seguinte algoritmo:

- 1° passo: Entrar com a matriz E = [1 4 3 1; 2 5 4 4; 1 3 2 5];
- 2º passo: Obter a matriz X utilizando o comando X = rref(E).

Quadro 5.4 Exemplo 5.3 no Scilab utilizando o comando rref

Matriz E	Solução via Scilab
> E=[1 4 3 1;2 5 4 4;1 -3 -2 5]	> X=rref(E)
E =	X =
1. 4. 3. 1. 2. 5. 4. 4. 132. 5.	1. 0. 0. 3. 0. 1. 02. 0. 0. 1. 2.

Fonte: Elaborado pelo autor

Observação 5.1 No Quadro 5.4 exibe que a matriz X obtida é a matriz final do processo de escalonamento da matriz E. A matriz X é a matriz obtida da matriz identidade de ordem X e a última coluna exibe a solução do sistema linear.

$$x = 3, y = -2 \text{ e } z = 2.$$

Exemplo 5.4 Considere o sistema linear abaixo:

$$\begin{cases} x + 2y + 3z &= 9\\ 2x - y + z &= 8\\ 3x - z &= 3 \end{cases}$$

Resolver, o sistema via Scilab.

Solução: O Quadro 5.5 exibe a solução do sistema linear usando o comando *linsolve*.

Quadro 5.5 Exemplo 5.4 no Scilab utilizando o comando linsolve

Matriz A	Matriz B	Solução via Scilab
> A=[1 2 3 ; 2 -1 1 ;3 0 -1]	> b=[9;8;3]	> linsolve(A,-b)
A =	b =	ans =
1. 2. 3.	9.	2.0000000
21. 1.	8.	-1.000000
3. 01.	3.	3.0000000

Fonte: Elaborado pelo autor

A matriz adjunta é de fundamental importância na determinação de uma matriz quadrada de ordem n (quando a matriz for inversível).

Definição 5.7 [matriz adjunta] Seja A uma matriz quadrada de ordem n. Define-se a matriz adjunta de A, denotada por adj(A), como a transposta da matriz dos cofatores de A, ou seja,

$$adj(A) = \begin{bmatrix} \overline{a}_{11} & \overline{a}_{12} & \cdots & \overline{a}_{1n} \\ \overline{a}_{21} & \overline{a}_{22} & \cdots & \overline{a}_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{n1} & \overline{a}_{n2} & \cdots & \overline{a}_{nn} \end{bmatrix}^{T} = \begin{bmatrix} \overline{a}_{11} & \overline{a}_{21} & \cdots & \overline{a}_{n1} \\ \overline{a}_{12} & \overline{a}_{22} & \cdots & \overline{a}_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{1n} & \overline{a}_{2n} & \cdots & \overline{a}_{nn} \end{bmatrix},$$

em que, $\bar{a}_{ij} = (-1)^{i+j} \cdot \det(\bar{A}_{ij})$ é o cofator do elemento a_{ij} , para $i, j = 1, 2, \dots, n$.

Exemplo 5.5 Seja

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -1 & -2 \\ 1 & 0 & -3 \end{pmatrix}$$

Calcule a matriz adjunta de A.

Solução:

$$adj(A) = \begin{pmatrix} \det\begin{pmatrix} -1 & -2 \\ 0 & -3 \end{pmatrix} & -\det\begin{pmatrix} 3 & -2 \\ 1 & -3 \end{pmatrix} & \det\begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} \end{pmatrix}^{T}$$

$$-\det\begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix} & \det\begin{pmatrix} 1 & 0 \\ 1 & -3 \end{pmatrix} & -\det\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \end{pmatrix}$$

$$\det\begin{pmatrix} 2 & 0 \\ -1 & -2 \end{pmatrix} & -\det\begin{pmatrix} 1 & 0 \\ 3 & -2 \end{pmatrix} & \det\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \end{pmatrix}^{T}$$

$$adadj(A) = \begin{pmatrix} 3+0 & -(-9+2) & 0+1 \\ -(-6+0) & -3+0 & -(0-2) \\ -4+0 & -(-2+0) & -1-6 \end{pmatrix}^{T}$$

$$adj(A) = \begin{pmatrix} 3 & 7 & 1 \\ 6 & -3 & 2 \\ -4 & 2 & -7 \end{pmatrix}$$

$$adj(A) = \begin{pmatrix} 3 & 6 & -4 \\ 7 & -3 & 2 \\ 1 & 2 & -7 \end{pmatrix}.$$

Teorema 5.2 Seja A uma matriz quadrada de ordem n. Então

$$A \cdot Adj(A) = Adj(A) \cdot A = \det(A) \cdot I$$

em que I é a matriz identidade. Assim, se $det(A) \neq 0$,

$$A^{-1} = \frac{1}{\det(A)} \cdot \left(Adj \left(A \right) \right).$$

Demonstração:

$$A \cdot Adj (A) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} \overline{a}_{11} & \overline{a}_{21} & \cdots & \overline{a}_{n1} \\ \overline{a}_{12} & \overline{a}_{22} & \cdots & \overline{a}_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{1n} & \overline{a}_{2n} & \cdots & \overline{a}_{nn} \end{pmatrix}$$

O elemento de posição i, j de $A \cdot Adj(A)$ é

$$(A \cdot Adj(A))_{ij} = a_{i1} \cdot \bar{a}_{j1} + \dots + a_{in} \cdot \bar{a}_{jn}$$

Pela definição de determinante pela expansão de cofatores e como determinante da matriz dos cofatores é igual ao determinante da matriz adjunta, tem-se

$$(A \cdot Adj (A))_{ij} = a_{i1} \cdot \bar{a}_{i1} + \cdots + a_{in} \cdot \bar{a}_{in}$$

Assim

$$A \cdot Adj (A) = \begin{cases} \det(A) & se & i = j \\ 0 & se & i \neq j \end{cases}$$

Analogamente, se prova que

$$Adj(A) \cdot A = \det(A) \cdot I.$$

Além disso, se $det(A) \neq 0$, definindo $B = \frac{1}{\det(A)} \cdot adj(A)$, tem-se

$$A \cdot B = A \cdot \left(\frac{1}{\det(A)} \cdot adj(A)\right)$$
$$= \frac{1}{\det(A)} \cdot (A \cdot adj(A))$$
$$= \frac{1}{\det(A)} \cdot (\det(A) \cdot I)$$
$$= I.$$

Portanto, A é inversível e B é a inversa de A.

Teorema 5.3 [Regra de Cramer] Seja

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \vdots &\vdots &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Um sistema linear de n equações e n incógnitas. Se a matriz $det(A) \neq 0$ então o sistema tem a solução única

$$x_1 = \frac{\det(A_1)}{\det(A)}, x_2 = \frac{\det(A_2)}{\det(A)}, \dots, x_n = \frac{\det(A_n)}{\det(A)},$$

em que A_i é a matriz obtida de A substituindo a i-ésima coluna de A por B.

Demonstração: Se $det(A) \neq 0$ então A é inversível. Assim,

$$X = A^{-1}B = \begin{bmatrix} \frac{a_{11}}{\det(A)} & \frac{a_{21}}{\det(A)} & \cdots & \frac{a_{n1}}{\det(A)} \\ \frac{\bar{a}_{12}}{\det(A)} & \frac{\bar{a}_{22}}{\det(A)} & \cdots & \frac{\bar{a}_{n2}}{\det(A)} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\bar{a}_{1n}}{\det(A)} & \frac{\bar{a}_{2n}}{\det(A)} & \cdots & \frac{\bar{a}_{nn}}{\det(A)} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Isso significa que

$$x_i = \frac{1}{\det(A)} \cdot (b_1 \cdot \bar{a}_{i1} + b_2 \cdot \bar{a}_{2i} \cdots + b_n \cdot \bar{a}_{ni}).$$

Seja A_i é a matriz obtida de A substituindo a i-ésima coluna de A por B. Se calcularmos o determinante pelo teorema de Laplace pela i-ésima coluna, tem-se

$$\det(A_i) = b_1 \cdot \bar{a}_{i1} + b_2 \cdot \bar{a}_{2i} \cdots + b_n \cdot \bar{a}_{ni}.$$

Logo,

$$x_i = \frac{\det(A_i)}{\det(A)}.$$

Exemplo 5.6 Considere o sistema linear abaixo:

$$\begin{cases} x + 2y + 3z &= 9 \\ 2x - y + z &= 8 \\ 3x - z &= 3 \end{cases}$$

Resolver, o sistema linear usando a regra de Cramer via Scilab.

Solução: O Quadro 5.3 exibe a solução do sistema linear.

Quadro 5.6 Exemplo 5.6 no Scilab

Matriz A	Matriz A ₁	Matriz A ₂
> A=[1 2 3 ; 2 -1 1 ;3 0 -1]	> A1=[9 2 3;8 -1 1;3 0 -1]	> A2=[1 9 3;2 8 1;3 3 -1]
A =	A1 =	A2 =
1. 2. 3.	9. 2. 3.	1. 9. 3.
21. 1.	81. 1.	2. 8. 1.
3. 01.	3. 01.	3. 31.
Matriz A_3	$\det(A)$	$\det(A_1)$
> A3=[1 2 9;2 -1 8;3 0 3]	> det(A)	> det(A1)
A3 =	ans =	ans =
1. 2. 9.	20.	40.
21. 8.		
3. 0. 3.		
$det(A_2)$	$\det(A_3)$	Cálculo de x
> det(A2)	> det(A3)	> x=det(A1)/det(A)
ans =	ans =	x =
-20.000000	60.	2.
Cálculo de y	Cálculo de z	solução
> y=det(A2)/det(A)	> z=det(A3)/det(A)	2.0000000
y =	z =	-1.0000000
		3.0000000
-1.0000000	3.	

Fonte: Elaborado pelo autor

6. SEQUÊNCIA DIDÁTICA DAS HABILIDADES DA BNCC PARA O ENSINO DE MATRIZES

Na Seção 6.1 faz-se uma apresentação das competências da Base Nacional Comum Curricular – BNCC e das competências específicas de Matemática para o Ensino Fundamental e para o Ensino Médio.

6.1 Contextualizando a BNCC e o DCTM

A BNCC define dez competências gerais que englobam os seguintes aspectos: Conhecimento; Pensamento científico, crítico e criativo; Repertório Cultural; Comunicação; Cultura Digital; Trabalho e projeto de vida; Argumentação; Autoconhecimento e Autocuidado; Empatia e cooperação; Autonomia e responsabilidade (Brasil, 2017).

Essas competências se inter-relacionam e perpassam todos os componentes curriculares da Educação Básica até o Ensino Médio para a construção de conhecimentos, habilidades, atitudes e valores, a saber:

- Valorizar e utilizar os conhecimentos historicamente construídos sobre o mundo físico, social, cultural e digital para entender e explicar a realidade, continuar aprendendo e colaborar para a construção de uma sociedade justa, democrática e inclusiva;
- II. Exercitar a curiosidade intelectual e recorrer à abordagem própria das ciências, incluindo a investigação, a reflexão, a análise crítica, a imaginação e a criatividade para investigar causas, elaborar e testar hipóteses, formular e resolver problemas e criar soluções (inclusive tecnológicas) com base nos conhecimentos das diferentes áreas;
- III. Valorizar e fruir as diversas manifestações artísticas e culturais, das locais às mundiais, e também participar de práticas diversificadas da produção artístico-cultural;
- IV. Utilizar diferentes linguagens -verbal (oral ou visual-motora, como Libras, e escrita), corporal, visual, sonora e digital -, bem como conhecimentos das linguagens artística, matemática e científica, para se expressar e partilhar informações, experiências, ideias e sentimentos em diferentes contextos e produzir sentidos que levem ao entendimento mútuo;
- V. Compreender, utilizar e criar tecnologias digitais de informação e comunicação de forma crítica, significativa, reflexiva e ética nas diversas práticas sociais (incluindo as escolares) para se comunicar, acessar e disseminar informações, produzir conhecimentos, resolver problemas e exercer protagonismo e autoria na vida pessoal e coletiva;
- VI. Valorizar a diversidade de saberes e vivências culturais e apropriar-se de conhecimentos e experiências que lhe possibilitem entender as relações próprias do mundo do trabalho e fazer escolhas alinhadas ao exercício da cidadania e ao seu projeto de vida com liberdade, autonomia, consciência crítica e responsabilidade;

- VII. Argumentar com base em fatos, dados e informações confiáveis, para formular, negociar e defender ideias, pontos de vista e decisões comuns que respeitem e promovam os direitos humanos, a consciência socioambiental e o consumo responsável em âmbito local, regional e global, com posicionamento ético em relação ao cuidado de si mesmo, dos outros e do planeta;
- VIII. Conhecer-se, apreciar-se e cuidar de sua saúde física e emocional, compreendendo-se na diversidade humana e reconhecendo suas emoções e as dos outros, com autocrítica e capacidade para lidar com elas;
- IX. Exercitar a empatia, o diálogo, a resolução de conflitos e a cooperação, fazendo-se respeitar e promovendo o respeito ao outro e aos direitos humanos, com acolhimento e valorização da diversidade de indivíduos e de grupos sociais, seus saberes, identidades, culturas e potencialidades, sem preconceitos de qualquer natureza;
- X. Agir pessoal e coletivamente com autonomia, responsabilidade, flexibilidade, resiliência e determinação, tomando decisões com base em princípios éticos, democráticos, inclusivos, sustentáveis e solidários.

A Base Nacional Comum Curricular – BNCC, surgiu visando garantir aos estudantes que suas aprendizagens sejas desenvolvidas e consolidadas na Educação Básica. Este documento propõe a organização dos conteúdos matemáticos para o Ensino Fundamental em cinco unidades temáticas: Números; Álgebra; Geometria, Grandezas e Medidas; Probabilidade e Estatística (Brasil, 2017).

Além dos conteúdos comuns a todo território brasileiro, a Lei de Diretrizes e Base -LDB (BRASIL, 1996) e a BNCC (Brasil, 2017) apontam que deve haver complementação em âmbito local, de acordo com as características regionais e locais do estabelecimento escolar em questão. Por isso, foi aprovado pelo Conselho de Estadual de Educação – CEE, por meio da Resolução CEE/MA nº 285/2018, o Documento Curricular do Território Maranhense, que serve de base para as escolas das redes públicas e privadas reelaborarem seus projetos político-pedagógicos.

Segundo o DCTM, essas competências, ao longo do Ensino Fundamental, devem ser atreladas aos interesses, habilidades e escolhas dos estudantes, dando-lhes condições de atuar na vida compreendendo os fenômenos sociais, políticos e econômicos, posicionando-se com criatividade e participação (BRASIL, 2019).

A área de Matemática, conforme a BNCC do Ensino Fundamental (BRA-SIL,2017), prevê o desenvolvimento de competências específicas como mostra o Quadro 6.1.

Quadro 6.1 Descrição das Competências Específicas de Matemática para o Ensino Fundamental

COMPETÊNCIA	DESCRIÇÃO
ESPECÍFICA	220037.10
1	Reconhecer que a Matemática é uma ciência humana, fruto das necessidades e preocupações de diferentes culturas, em diferentes momentos históricos, e é uma ciência viva, que contribui para solucionar problemas científicos e tecnológicos e para alicerçar descobertas e construções, inclusive com impactos no mundo do trabalho
2	Desenvolver o raciocínio lógico, o espírito de investigação e a capacidade de produzir argumentos convincentes, recorrendo aos conhecimentos matemáticos para compreender e atuar no mundo.
3	Compreender as relações entre conceitos e procedimentos dos diferentes campos da Matemática (Aritmética, Álgebra, Geometria, Estatística e Probabilidade) e de áreas do conhecimento, sentindo segurança quanto à própria capacidade de construir e aplicar conhecimentos matemáticos, desenvolvendo a autoestima e a perseverança na busca de soluções.
4	Fazer observações sistemáticas de aspectos quantitativos e qualitativos presentes nas práticas sociais e culturais, de modo a investigar, organizar, representar e comunicar informações relevantes, para interpretá-las e avaliá-las crítica e eticamente, produzindo argumentos convincentes.
5	Utilizar processos e ferramentas matemáticas, inclusive tec- nologias digitais disponíveis, para modelar e resolver proble- mas cotidianos, sociais e de outras áreas de conhecimento, validando estratégias e resultados.
6	Enfrentar situações-problema em múltiplos contextos, incluindo-se situações imaginadas, não diretamente relacionadas com o aspectos prático-utilitário, expressar suas respostas e sintetizar conclusões, utilizando diferentes registros e linguagens (gráficos, tabelas, esquemas, além de texto escrito na língua materna e outras linguagens para descrever algoritmos, como fluxogramas, e dados).
7	Desenvolver e/ou discutir projetos que abordem, sobretudo, questões de urgências social, com base em princípios éticos, democráticos, sustentáveis e solidários, valorizando a diversidade de opiniões de indivíduos e de grupos sociais, sem preconceitos de qualquer natureza.
8	Interagir com seus pares de forma cooperativa, trabalhando coletivamente no planejamento e desenvolvimentos de pesquisas para responder a questionamentos e na busca de soluções para problemas, de modo a identificar aspectos consensuais ou não na discussão de uma determinada questão, respeitando o modo de pensar dos colegas e aprendendo com eles.

A BNCC do Ensino Médio (2018), propõe que seja a ampliação, consolidação e aprofundamento das aprendizagens essenciais que foram aprendidas nas etapas anteriores da educação básica, objetivando relacionar e aplicar na realidade em que o aluno está inserido, relacionando e ampliando os conhecimentos adquiridos em outras etapas.

O Ensino Médio está organizado em cinco áreas de conhecimento, dentro das quais estão agrupados os componentes curriculares, a saber: Linguagens e suas tecnologias; matemática e suas tecnologias; Ciências humanas e sociais aplicadas; Formação técnica e profissional.

A área de Matemática, conforme a BNCC do Ensino Médio (BRASIL,2018), prevê o desenvolvimento de cinco competências específicas como mostra o Quadro 6.2.

Quadro 6.2 Descrição das Competências Específicas de Matemática para o Ensino Médio

=	viedio				
COMPETÊNCIA ESPECÍFICA	DESCRIÇÃO				
1	Utilizar estratégias, conceitos e procedimentos matemáticos para interpretar situações em diversos contextos, sejam atividades cotidianas, sejam fatos das Ciências da Natureza e Humanas, das questões socioeconômicas ou tecnológicas, divulgados por diferentes meios, de modo a contribuir para uma formação geral.				
2	Propor ou participar de ações para investigar desafios do mundo contemporâneo e tomar decisões éticas e socialmente responsáveis, com base na análise de problemas sociais, como os votados a situações de saúde, sustentabilidade, das implicações da tecnologia no mundo do trabalho, entre outros, mobilizando e articulando conceitos, procedimentos e linguagens próprios da Matemática.				
3	Utilizar estratégias, conceitos, definições e procedimentos matemáticos para interpretar, construir modelos e resolver problemas em diversos contextos, analisando a plausibilidade dos resultados e a adequação das soluções propostas, de modo a construir argumentação consistente.				
4	Compreender e utilizar, com flexibilidade e precisão, diferentes registros de representação matemáticos (algébrico, geométrico, estatístico, computacional etc.), na busca de solução e comunicação de resultados de problemas.				
5	U]Investigar e estabelecer conjecturas a respeito de diferentes conceitos e propriedades matemáticas, empregando estratégias e recursos, como observação de padrões, experimentações e diferentes tecnologias, identificando a necessidade, ou não, de uma demonstração cada vez mais formal na validação das referidas conjecturas.				

Fonte: BRASIL, 2018.

Conforme a BNCC, as habilidades relacionadas às competências específicas são representadas por códigos alfanuméricos, em que cada parte do código representa alguma parte específica.

Exemplo 6.1 A habilidade EM13MAT301

- EM: indica a etapa do Ensino Médio.
- 13: indica as séries dos níveis de ensino, refere-se da 1ª a 3ª série do Ensino Médio.
- MAT: Matemática e suas tecnologias
- 3: está associado a competência específica de cada habilidade.
- **01:** Refere-se à habilidade dentro da competência.
- Assim, o código EM13MAT301 se refere à primeira habilidade proposta na área de Matemática e suas tecnologias relacionada à competência específica de número 3, que pode ser desenvolvida da 1ª a 3ª série do Ensino Médio.

O Quadro 6.3 apresenta algumas habilidades e competências propostas pela BNCC.

Quadro 6.3 Habilidades e Competências referentes a matrizes e sistemas line-

ares segundo a BNCC

HABILIDADES	COMPETÊNCIAS
EM13MAT301	Resolver e elaborar problemas do cotidiano, da Matemática e de outras áreas do conhe- cimento, que envolvem equações lineares simultâneas, usando técnicas algébricas e gráficas, com ou sem apoio de tecnologias digitais.
EM13MAT505	Resolver problemas sobre ladrilhamento do plano, com ou sem apoio de aplicativos de geometria dinâmica, para conjecturar a respeito dos tipos ou composição de polígonos que podem ser utilizados em ladrilhamento, generalizando padrões observados.

Fonte: BRASIL, 2018

O Quadro 6.4 apresenta uma organização curricular BNCC para a 2ª Série do Ensino Médio para o assunto Matrizes e Sistemas lineares, proposto pelo Documento Curricular do Território Maranhense (DCTM) – Ensino Médio (BRASIL, 2022).

Quadro 6.4 Organização Curricular proposta pelo DCTM

COMPETÊNCIA ESPECÍFICA	HABILIDADE	COMPETÊNCIA	OBJETOS DE CONHECI- MENTO	CONTEÚDOS
Competência 3	EM13MAT301	Números e Álgebra	Matrizes e Determinantes	Matrizes
Competência 5	EM13MAT505	Números e Álgebra	Sistemas Lineares	Sistemas Lineares

Fonte: Documento Curricular do Território Maranhense (BRASIL,2022)

6.2 Sequência Didática nas Unidades Temáticas: Números e Álgebra

Conforme Zabala (1998), a sequência didática é um conjunto de atividades ordenadas, estruturadas e articuladas para a realização de certos objetivos educacionais, que têm um princípio e um fim conhecido tanto pelos professores como pelos alunos. Ou seja, é aonde o professor, através dos objetivos que pretende alcançar com seus alunos vai organizar sistematicamente uma série de atividades para atingir a aprendizagem daqueles conteúdos selecionados para uma determinada unidade didática: os conceituais, procedimentais e atitudinais.

Segundo Zabala (1998), ao pensar em fazer uma sequência devemos questionálas considerando as seguintes perguntas: Na sequência didática existem atividades:

- Que nos permitem determinar os conhecimentos prévios que cada aluno tem em relação aos novos conteúdos de aprendizagem?
- 2. Cujos conteúdos são propostos de forma que sejam significativos e funcionais para os alunos?
- 3. Que possamos inferir que são adequadas ao nível de desenvolvimento de cada aluno?
- 4. Que representem um desafio alcançável para o aluno, quer dizer, que levam em conta suas competências atuais e as façam avançar com a ajuda necessária; portanto, que permitam criar zonas de desenvolvimento proximal e intervir?
- 5. Que evoquem um conflito cognitivo e promovem a atividade mental do aluno, necessária para que estaleca relações entre os novos conteúdos e os conhecimentos prévios?
- 6. Que promovam uma atitude favorável, ou seja, que sejam motivadoras em relação à aprendizagem dos novos conteúdos?

64

7. Que estimulem a autoestima e o autoconceito em relação às aprendizagens

que se propõem, isto é, que o aluno possa sentir que em certo grau aprendeu,

que seu esforço valeu a pena?

8. Que ajudem o aluno a adquirir habilidade relacionadas com o aprender a apren-

der, que lhe permitam ser cada vez mais autônomo em suas aprendizagens?

Da mesma forma, Rodrigues e Bolognezi (2020), define sequência didática como

um conjunto de atividades organizadas pelo professor que objetivam o entendimento

sobre certo conteúdo, levando o aluno à reflexão e à construção dos saberes neces-

sários para uma aprendizagem significativa.

De acordo com Correa (2019), a sequência didática constitui um importante instru-

mento para o ensino de Matemática, porém o professor deve planejar adequadamente

esta atividade, sob o risco de não atingir os objetivos pretendidos.

A sequência proposta tem como aporte as recomendações estabelecidas pela

BNCC (BRASIL 2018) e pelo Documento Curricular do Território Maranhense (BRA-

SIL, 2022).

A sequência didática foi elaborada para ser aplicada em turmas do segundo ano

do Ensino Médio e para alunos do Ensino Superior na disciplina Álgebra Linear.

6.2.1 Sequência didática – Habilidade EM13MAT301

Conteúdo: Matrizes

Objetivos:

Compreender o conceito de matriz

Interpretar e representar uma tabela como matriz

Identificar elementos de uma matriz

Identificar os diversos tipos de matrizes

Conceituar matriz transposta

Conceituar matriz inversa

Realizar operações matriciais

Aplicar as propriedades matriciais

Compreender o conceito de determinante

Calcular os cofatores de uma matriz

ATIVIDADES

1) Considere as matrizes:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -4 & 5 & 2 \end{bmatrix}, B = \begin{bmatrix} 0 & 2 & 1 \\ 2 & -1 & 2 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & -1 & 5 \\ 4 & 3 & 2 & 1 \\ 8 & -2 & 6 & -3 \end{bmatrix}, D = \begin{bmatrix} 2 & 3 \\ 1 & 0 \\ -1 & 5 \end{bmatrix},$$

$$E = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 2 & 4 \\ -2 & 5 & -3 \end{bmatrix}, F = \begin{bmatrix} 0 & 2 & 1 \\ -1 & 3 & 5 \\ -3 & 4 & -2 \end{bmatrix}, G = \begin{bmatrix} 1 & 2 & -1 \end{bmatrix}, H = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}.$$

Calcule, usando SCILAB:

$$a) A + B$$
 $b) AB$ $c) A + C$ $d) AC$ $e) CA$ $f) AD$

g) DA h) EF i) FE
$$j$$
) A^2 k) E^3 l) F^5

2) Considerando as matrizes *E* e *F*, calcule, usando Scilab:

a)
$$(E + F)^2$$

b)
$$E^2 + 2EF + F^2$$

c)
$$E^2 + EF + FE + F^2$$
.

d)
$$EF - FE$$

e)
$$3E - F$$

f)
$$F^T E^T$$

g)
$$E+F$$

h)
$$E - F$$

i)
$$E^2 - F^2$$

j) Explique porque, em geral,

$$(E+F)^2 \neq E^2 + 2EF + F^2$$
 e $(E+F)(E-F) \neq E^2 - F^2$

k)
$$det(E) + det(F)$$

I)
$$det(E + F)$$

m)
$$inv(E)$$

n)
$$trace(E+F)$$

o)
$$trace(E) + trace(F)$$

- p) $trace(E^T)$
- q) trace(EF)
- r) trace(FE)
- 3) Encontre *E*.* *F* (multiplicação ponto a ponto)
- 4) Encontre F.* E (multiplicação ponto a ponto)

- 5) Encontre F.*. E
- 6) Encontre E.*. F
- 7) Crie uma matriz 7 × 7 aleatória.
- 8) Declare no SCILAB
 - a) A matriz identidade de ordem 4
 - b) A matriz nula quadrada de ordem 3
 - c) A matriz nula de ordem 3×7
 - d) Uma matriz triangular superior de ordem 5
 - e) Uma matriz triangular inferior de ordem 4
 - f) Uma matriz diagonal de ordem 6
 - g) Uma matriz nula de ordem 4×6
- 9) Verifique, utilizando Scilab, as propriedades da adição de matrizes e as propriedades da multiplicação de matrizes:

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 3 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} -2 & -1 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & -2 \end{bmatrix}, C = \begin{bmatrix} -1 & 1 & 1 \\ -1 & 0 & -1 \\ 1 & 1 & -1 \end{bmatrix}.$$

10) Dadas as matrizes

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -1 & -2 & 0 \\ 1 & 2 & -2 \\ 0 & 0 & -2 \end{bmatrix}, C = \begin{bmatrix} -1 & 2 & 0 \\ -1 & 2 & -1 \\ 0 & 2 & -1 \end{bmatrix}$$

Usando SCILAB, calcule:

- a) det(A + B + C)
- b) $det(A \cdot B \cdot C)$
- c) $det(B + C) \cdot A$
- d) $det(A \cdot B C)$
- 11)Seja

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & 4 \\ 5 & 2 & -3 \end{bmatrix}$$

Usando Scilab, calcule todos seus cofatores.

- 6.2.2 Sequência didática Habilidade EM13MAT505
 - Conteúdo: Sistemas Lineares

• Objetivos:

- Identificar equações na forma linear
- Identificar e classificar um sistema linear
- Utilizar a Regra de Cramer na resolução de sistemas
- Resolver sistemas lineares por diferentes métodos
- Interpretar a solução de um sistema linear
- Identificar as matrizes de um sistema linear
- Aplicar as propriedades matriciais
- Classificar um sistema linear
- Codificar a solução de um sistema linear utilizando Scilab.

ATIVIDADES

1) Resolva no SCILAB, os sistemas lineares:

a)
$$\begin{cases} x + 3y + z &= 0\\ 3x - 3y + z &= 8\\ 2y + z &= 0 \end{cases}$$

b)
$$\begin{cases} x + y + z &= 4\\ 2x + y - z &= 10\\ 2x - y - 7z &= 0 \end{cases}$$

c)
$$\begin{cases} 2x - y + z &= 3\\ y + 2z &= 0\\ 2z &= -6 \end{cases}$$

d)
$$\begin{cases} x - y + z &= -1\\ 2x + y - 3z &= 8\\ x - 2y + 3z &= -5 \end{cases}$$

e)
$$\begin{cases} x - 2y + z &= 0\\ 2x + 3y + z &= 0\\ 3x + y + 2z &= 0 \end{cases}$$

f)
$$\begin{cases} x + y + 2z + w &= 0\\ 2x - y + z - w &= 0\\ 3x + y + 2z + 3w &= 0\\ 2x - y - z + w &= 0 \end{cases}$$

2) (ENEM 2020) Uma empresa avaliou os cinco aparelhos de celulares $(T_1,T_2,T_3,T_4\ e\ T_5)$ mais vendidos no último ano, nos itens: câmera, custo-benefício, design, desempenho da bateria e tela, representados por I_1,I_2,I_3,I_4 e I_5 , respectivamente, A empresa atribuiu notas de 0 a 10 para cada item avaliado e organizou essas notas em uma matriz A, em que cada elemento a_{ij} significa a nota dada pela empresa ao aparelho T_i no item I_j . A empresa considera que o melhor aparelho celular é aquele que obtém a maior soma das notas obtidas nos cinco itens avaliados

$$A = \begin{bmatrix} 6 & 9 & 9 & 9 & 8 \\ 9 & 6 & 7 & 8 & 10 \\ 7 & 10 & 10 & 7 & 10 \\ 8 & 8 & 10 & 10 & 9 \\ 8 & 8 & 8 & 9 & 9 \end{bmatrix}$$

Com base nessas informações, o aparelho de celular que a empresa avaluou como sendo o melhor é o

- a) T_1
- b) T_2
- c) T_3
- d) T_4
- e) T_5

7. CONSIDERAÇÕES FINAIS

Utilizar softwares matemáticos em sala de aula motiva os alunos, a ideia é que os alunos participem das aulas, e que os conceitos matemáticos, bem como suas propriedades sejam estudados, pois a ferramenta computacional não substitui o professor.

Neste trabalho verificou-se as potencialidades do Scilab no ensino de matrizes e na otimização de cálculos. Além de tornar o ensino mais dinâmico. O Objetivo geral do trabalho foi propor uma sequência didática para o ensino de matrizes utilizando um ambiente computacional tendo o Scilab como ferramenta computacional.

Cabe ressaltar que a continuidade de pesquisas envolvendo softwares matemáticos é de grande importância, pois se constitui em um instrumento de ensino que contribui para um maior desenvolvimento na aprendizagem dos discentes.

REFERÊNCIAS

BARBIER, J.M. **A avaliação em formação**, trad. M. ^a Bastos. Biblioteca das Ciências do Homem. Afrontamento, 1985.

BERNARDES, A.; ROQUE, T. História da noção de matriz: uma releitura sob a luz de novas abordagens historiográficas. **Revista Brasileira de História da Matemática**. v. 16, n 31, p. 1-19, 2016.

BOLDRINI, José Luiz et al. Álgebra Linear. 3. ed. São Paulo: HARBRA. 1986.

BORBA, M. C. **Tecnologias informáticas na educação matemática e reorganiza- ção do pensamento.** In: BICUDO, M. A. V. Pesquisa em educação matemática. São Paulo: Editora UNESP, 1999.

BRASIL. **Base Nacional Comum Curricular**. Educação é a Base. Brasília: Ministério da Educação, 2017.

BRASIL. **Base Nacional Comum Curricular. Ensino Médio**. Brasília: Ministério da Educação, 2018.

BRASIL. **Documento Curricular do Território Maranhense**. Ensino Médio / Maranhão, Secretária de Estado da Educação. São Luís, 2022. ISBN 978-65-86289-21-3.

BRASIL. **Parâmetros Curriculares Nacionais.** Introdução aos parâmetros curriculares nacionais. Secretaria de Educação Fundamental. Brasília. MEC/SEF, 1997.

BRASIL. Lei de Diretrizes e Bases da Educação Nacional, LDB. 9394/1996.

CALLIOLI, C.A; DOMINGUES, H.H. E COSTA, R.C.F., Álgebra Linear e Aplicações, 4a. ed. São Paulo: Atual, 1983.

CAMPOS, F.F. Fundamentos de Scilab, Belo Horizonte: CCA-UFMG, 2010.

CAYLEY, A. 1858. A memoir on the theory of matrices. **Philosophical Transactions of the Royal Society of London**.148, 17–37.

CHEREGUINI, A.L.C. Exploração do conceito de multiplicação de matrizes através de tecnologias digitais: sites e softwares educativos. 2013. Dissertação (mestrado em Matemática) – Programa de mestrado profissional em Matemática em rede nacional – Universidade Federal de São Carlos, São Luís. 2013.

CORREA, S.S. Uma sequência didática para o ensino e aprendizagem de proporcionalidade no ensino médio. 2019. Dissertação (mestrado em Matemática) -Programa de mestrado profissional em Matemática em rede nacional — Universidade Estadual do Norte Fluminense. Campos dos Goytacazes. 2019.

COSTA, B.V.E. A Utilização do SCILAB em Aplicações de matrizes e Sistemas Lineares. 2017. Dissertação (mestrado em Matemática) — Programa de mestrado profissional em Matemática em rede nacional — Universidade Federal do Maranhão, São Luís. 2017.

DUARTE, A.L.C; SILVA, R.M; MOURA, N. Concepção de competência na BNCC e no Documento Curricular do Território Maranhense (DCTM). **Educação em Revista**. Marília, v. 21, n. 02, p. 21-36, 2020.

LIPSCHUTZ, Seymour. Álgebra Linear/Seymour Lipschutz, Marc Lars Lipson: tradução: Dr. Clauss Ivo Doering. 4 ed.Porto Alegre: Bookman, 2011.

MARANHÃO (Estado). **Diretrizes Curriculares Estaduais**. 3. ed. São Luís: Seduc, 2014.

MARANHÃO. Plano Mais Ideb: Sugestões Curriculares para o Ensino Médio – Matemática. São Luís: Seduc, 2017.

PAIVA, M. R.; Matemática. 1.ed. São Paulo: Editora Moderna, 1999.

PIRES. P.S da MOTA. **Introdução ao Scilab**. Natal: DCA-UFRN, 2004. Disponível em: http://www.dca. ufrn.br/~pmotta.

REAMAT. Cálculo numérico - um livro colaborativo - versão com Scilab. disponível em https://www.ufrgs.br/reamat/CalculoNumerico/livro-sci/rias sobre_o_scilab.html. 2020.

RODRIGUES, C.L.H; BOLOGNEZI, R.A.L. Sequência didática para introdução do conceito de função afim para o primeiro ano do Ensino Médio. **Ensino da Matemática em Debate**, São Paulo, 7(3), 297-319, 2020. https://doi.org/10.23925/2358-4122.2020v7i3p297-319.

SÁ, A. L; MACHADO, M. C. **O uso do software Geogebra no estudo de funções**. XIV EVIDOSOL e XI CILEC-online-junho/2017.

SCILAB. Disponível em: http://www.scilab.org/. Acesso em: 02 mar. 2022.

SILVA, Alécia Dos Santos. **O uso da Tecnologia como suporte para o ensino de matrizes**. Anais VI CONEDU, Campina Grande: Realize Editora, 2019. Disponível em: https://editorarealize.com.br/artigo/visualizar/61706. Acesso em, 29/06/2022.

SILVA, G. A Informática Aplicada na Educação. **Brasil Escola,** 2021. Disponível em: https://meuartigo.brasilescola.uol.com.br/educacao/a-informatica-aplicada-na-educacao.htm . Acesso em: 06 jul. 2021.

SIQUEIRA, A.C.; KINALSKI JÚNIOR, V.; VIALI, L.; LAHM, R.M. Tecnologias no ensino de matemática: recursos e possiblidades do software scilab para o ensino de matrizes. **Revista Ciências & ideias**. v. 11, n 3, p. 1-11, 2020.

SILVA NETO, JOÃO RODRIGUES DA. A Utilização do software octave na interpretação geométrica das operações com matrizes no Ensino Médio. 2019. 75 p. Dissertação (Mestrado em Matemática) — Programa de Mestrado Profissional em Matemática em Rede Nacional - Universidade Federal Rural do Semiárido, Mossoró. 2019.

SOUZA, A.C.; GONÇALVES, C.B. **O Estado da Arte das pesquisas sobre o uso de Tecnologias na Educação brasileira**. Anais V CONEDU, Olinda, v.1, p.1-10, out, out.2018. Disponível em: https://www.editorarealize.com.br/editora/anais/co-nedu/2018/TRABALHO_EV117_MD1_SA19_ID1576_09092018004450.pdf. Acesso em: 23 de junho de 2022.

SYLVESTER, J. J. 1850. Additions to the articles "on a new class of theorems", and "on pascal's theorems". In: BAKER, H. F. 1904. The Collected Mathematical Papers of James Joseph Sylvester, v. 1. Cambridge, University Press. 145 –151.

ZABALA, A. A prática educativa: como ensinar. Porto Alegre: ArtMed, 1998.