Use este identificador para citar ou linkar para este item:
http://hdl.handle.net/123456789/3315
Título: | Big data: análise de sentimento em dados de pesquisa de opinião utilizando o Framework GridGain e processamento em memória |
Título(s) alternativo(s): | Big data: sentiment analysis in opinion poll data using the GridGain Framework and memory processing |
Autor(es): | SOUSA, Jonatas Brito de |
Palavras-chave: | Big data GridGain Data análise MapReduce Análise de sentimento e pesquisa de opinião Big data GridGain Data analysis Sentiment analysis and opinion research MapReduce |
Data do documento: | 16-Dez-2015 |
Editor: | Universidade Federal do Maranhão |
Resumo: | Big Data apresenta-se como uma das principais tecnologias da atualidade. Métodos simples e eficientes para realizar big data análise são responsáveis por diversos avanços em análise comercial, dados médicos e comportamental. Este trabalho apresenta um método para realizar análise de sentimento em dados provenientes de pesquisa de opinião, utilizando o framework GridGain. O método é projetado para lidar com dados que possuem características big data, ou seja, permite a análise de grandes volumes de informações, por meio do uso de processamento paralelo e MapReduce. O algoritmo de MapReduce implementado pelo framework GridGain, é um algoritmo para processamento paralelo consolidado, pois permiti processamento de grandes volumes de informações de fontes variadas sobre uma estrutura de processamento existente em rede ou por meio de múltiplos nós de processamento em uma máquina. A análise dos dados por meio da metodologia, aponta uma nova maneira de extrair informação útil dos dados de pesquisa de opinião, sob uma ótica diferente das tradicionais análises matemáticas empregadas, permitindo abordar os dados sobre outra perspectiva de análise, a dos sentimentos expressos pelas respostas dos entrevistados. |
Descrição: | ABSTRACT Big Data is presented as one of today's leading technologies. Simple and efficient methods to make big data analysis are responsible for many advances in business analysis, medical and behavioral data. This paper presents a method to perform sentiment analysis on data from survey, using GridGain framework. The method is designed to handle data that have big data characteristics, or allows analysis of large volumes of information, through the use of parallel processing and MapReduce. The MapReduce algorithm implemented by GridGain framework, an algorithm is consolidated to parallel processing, since processing large volumes enable a variety of sources of information on an existing processing structure in a network or across multiple processing nodes on a machine. Data analysis by methodology indicates a new way to extract useful information from the survey data, in a different light the traditional mathematical analysis employed, allowing addressing data on another perspective analysis, the feelings expressed by the answers of respondents. |
URI: | http://hdl.handle.net/123456789/3315 |
Aparece nas coleções: | TCCs de Graduação em Ciência da Computação do Campus do Bacanga |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
JONATAS-SOUSA.pdf | Trabalho de Conclusão de Curso | 3,2 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.